NUCLEAR SHAPE ISOMERS ## P. MÖLLER and A. J. SIERK Theoretical Division, Los Alamos National Laboratory Los Alamos, NM 87545 ## R. BENGTSSON Department of Mathematical Physics, Lund Institute of Technology, P. O. Box 118, SE-22100 Lund, Sweden #### H. SAGAWA Center for Mathematical Sciences, University of Aizu Aizu-Wakamatsu, Fukushima 965-80, Japan and #### T. ICHIKAWA Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan Submitted to Atomic Data and Nuclear Data Tables May 10, 2010 Accepted September 14, 2010 Published: Atomic Data and Nuclear Data Tables 98 (2012) 149-300 We calculate potential-energy surfaces as functions of spheroidal (ϵ_2), hexadecapole (ϵ_4), and axial-asymmetry (γ) shape coordinates for 7206 nuclei from A=31 to A=290. We tabulate the deformations and energies of all minima deeper than 0.2 MeV and of the saddles between all pairs of minima. The tabulation is terminated at N=160. Our study is based on the FRLDM macroscopic-microscopic model defined in Atomic Data and Nuclear Data Tables [59, 185 (1995)]. We also present potential-energy contour plots versus ϵ_2 and γ for 1224 even-even nuclei in the region studied. We can identify nuclei for which a necessary condition for shape isomers occurs, namely multiple minima in the calculated potential-energy surface. We find that the vast majority of nuclear shape isomers occur in the A=80 region, the A=100 region, and in a more extended region centered around 208 Pb. A calculated region of shape isomers that has so far not been extensively explored is the region of neutron-deficient actinides "north-east" of 208 Pb. | P. Möller, A. J. Sierk, R. Bengtsson, H. Sagawa, and T. Ichikawa/Nuclear Shape Isomers | |---| | | | | | | | | | | | | | | | | | This page is intentionally left blank to optimize the layout for double-sided printing. | | The page is inconcionally tore same or opening one tay out for deaste state princing. | | | | | | | | | | | | | # Contents | T | INTRODUCTION | 5 | |--------------|---|-------------| | 2 | CALCULATIONAL DETAILS | 6 | | 3 | RESULTS OVERVIEW | 7 | | E | XPLANATION OF GRAPHS | 11 | | G | RAPHS | 13 | | E | XPLANATION OF TABLE | 12 0 | | \mathbf{T} | ABLE Calculated Shape-Isomer Properties | 122 | | Р. | $M\"{o}ller,$ | A. J. | Sierk, | R. Be | ngtsson, | , H. S | Sagawa | , and | T. Ich | ikawa/I | Nuclear | Shape | Isomers | | |----|---------------|--------|----------|--------|-----------|--------|--------|--------|--------|----------|----------|----------|---------|--| This pa | age is | intentio | onally | left blar | nk to | optimi | ze the | layou | t for do | uble-sio | ded prir | nting. | ## 1 INTRODUCTION In a previous issue of Atomic Data and Nuclear Data Tables we presented a calculation of nuclear ground-state masses and deformations for 8979 nuclei ranging from $^{16}\mathrm{O}$ to $^{339}136$ and extending from the proton drip line to the neutron drip line [1]. The calculation was based on the macroscopic-microscopic approach. The microscopic corrections were obtained from singleparticle levels calculated in a folded-Yukawa single-particle potential [2] by use of the Strutinsky method [3, 4]. Residual pairing corrections were calculated in the Lipkin-Nogami approximation [5, 6, 7, 8]. Two 1992 mass tables were provided, both with this microscopic correction, but with the macroscopic contribution to the total potential energy obtained in two different liquid-droptype models, namely the finite-range droplet model, and the finite-range liquid-drop model. We refer to the macroscopic-microscopic model in which the total potential energy is calculated as a sum of microscopic corrections from folded-Yukawa single-particle levels and a macroscopic energy term from the finite-range droplet model as FRDM(1992). The year in parentheses refers to the year the constants of the macroscopic model were determined and frozen. The potential-energy model in which the macroscopic term is given by the finite-range liquid-drop model is referred to as FRLDM(1992). For the current work we use a slightly modified macroscopic model whose parameters were fixed by a more careful consideration of fission-barrier heights in addition to nuclear masses [9]. This model is labeled FRLDM(2002). For many nuclei the potential energy versus shape has one or more additional minima over and above the ground-state minimum. In our mass paper [1] only properties of the ground-state minima were tabulated. Here we study the additional minima that sometimes exist. When one of these additional minima is sufficiently deep, then the nucleus may exist in a state corresponding to the energy and shape of this minimum; this state is a shape isomer. The lifetime of the shape isomer will depend on the overlap between the nuclear wave functions of the shape isomer and the ground state, the excitation energy of the shape isomer, and the height of the saddle separating the shape isomer and the ground state. Therefore the presence of multiple minima in calculated potentialenergy surfaces can be considered a necessary condition for shape isomerism. The scope of this paper is limited to providing a tabulation of calculated nuclear shape coordinates corresponding to all shape-isomeric minima and the energy of these minima. We also provide these properties for the saddles between all pairs of minima. The calculation includes all nuclei between the proton and neutron drip lines from A = 31 to A = 290, 7206 nuclei in all. Potential-energy-surface models that are the basis for calculating these properties are more global and on a firmer footing than are the models that use the calculated potential-energy surfaces as starting points for estimating isomer half-lives. The half-life models usually contain locally adjusted constants. However, it is our expectation that the characterization of the static properties of the shape isomers obtained from our global, unified, universal, and well-tested model will provide an improved starting point for estimating where shape isomers and their half-lives can be observed experimentally. We restrict our study here to "ground-state-like" shape isomers, that is we exclude fission isomers. We therefore only consider shapes with spheroidal deformation $\epsilon_2 \leq 0.45$. Furthermore we do not investigate configurations corresponding to rotational, vibrational or single-particle excitations. Energy surfaces calculated at higher angular momentum, which include such excitations, may have additional shape-coexisting energy minima, or sometimes fewer. They appear in different nuclei and at different shapes than those presented in this paper. To determine the occurrence of additional minima of the type we consider here, we calculate nuclear potential-energy surfaces versus spheroidal deformations ϵ_2 , axial asymmetry γ , and hexadecapole deformations ϵ_4 . Details are given in the next section. ## 2 CALCULATIONAL DETAILS For historical reasons and for compatibility with previous calculations we use the Nilsson perturbed-spheroid ϵ shape parameterization. Since its complete specification, including axial asymmetry is quite lengthy and is given in our mass paper [1] we do not repeat it here. Axial asymmetry was not implemented in the computer codes at the time of our mass paper, but this has now been accomplished. A couple of misprints relating to axial asymmetry that occur in equations in Ref. [1] (but which have not migrated to any calculations) are enumerated and corrected in Ref. [10]. We have earlier presented some highlights of the full results we tabulate and display here. In Ref. [10] we discussed reflection and axial asymmetry of the nuclear ground state which only affect relatively limited and localized regions of the nuclear chart. A brief summary of our full results on shape isomers is in Ref. [11]. These two papers are based on the identical potential-energy surfaces we present here and full details of the calculations can be found there [10, 11]; therefore we just summarize a few major points of the calculations here. The potential-energy surfaces are calculated in a three-dimensional deformation space with $\varepsilon_2 = (0.0, 0.025, \dots, 0.45)$, $\gamma = (0.0, 2.5, \dots, 60.0)$, and $\varepsilon_4 = (-0.12, -0.10, \dots, 0.12)$, altogether 6175 grid points. The results of our shape-isomer calculations up to N = 160 are given in the TABLE. Furthermore, we show calculated potential energies for 1224 nuclei as GRAPHS 11–112. These GRAPHS include almost all even-even nuclei in the region studied. Individual, page-size GRAPHS of each of the 7206 nuclei studied are available for download from our web site [12]. From the calculated three-dimensional potential-energy surfaces we generate 7206 two-dimensional contour plots. The contour maps have been constructed in the following way. At each point ϵ_2 and γ we display the lowest energy obtained for the 13 ϵ_4 grid points calculated. We have previously strongly emphasized and again discuss below that such a procedure in general does not give reasonable results in, for example, situations where the surface contains multiple local minima versus ϵ_4 and in some other situations [13, 9, 14]. However, we use the method for the
purpose of overview illustration only. All our specific results on minima and separating saddle points are obtained from a complete and appropriate immersion analysis [15, 16, 13, 14] of the full 3D space. These data are used by the plotting program which inserts the location of the minima and saddle points in the contour plots. The minima in the plots are shown as dots and the saddle points as X symbols. We show the contour plots corresponding to most even-even nuclei in GRAPHS 11–112. Only a few nuclei very close to the neutron drip line have been omitted. From the appearance of the surfaces and from our analysis of the full 3D space we conclude that the approximate 2D surfaces provide a good representation of the structure of the full 3D space. However, it is the exact structure of the full 3D space that is presented in the TABLE. In our calculations we use the same set of single-particle levels to calculate the shell-pluspairing corrections for several nearby nuclei. We take one additional step to enhance accuracy after the minima and separating saddle points have been determined. The deformations of all these stationary points are used to recalculate the energies at these deformations for the specific nucleus under consideration. Some quantities that depend on Z and N are the single-particle potential radii and depths, the strength of the spin-orbit force and the pairing strength which are all smoothly and slowly varying functions of Z and N. Thus, in the recalculation these quantities assume exactly their proper values for this nucleus and the shell-plus-pairing corrections are calculated from the precise levels obtained. This strategy is based on the assumption that the locations of minima or saddles are less sensitive to parameter variations than the energy itself. We have performed numerous checks of this assumption and it is fulfilled to a very high degree. We used the same procedure to calculate our mass table [1]. Once we have recalculated the energies we generate a table of saddle points and minima identical in form to the original approximate table, except for the values of the energies of the minima and saddle points. In a few pathological cases where the original minimum was very shallow its recalculated energy may be higher than the saddle that was originally found to stabilize the minimum, that is the minimum does not exist when the precise parameters for the nucleus under study are used. We scan the table for such occurrences and eliminate those and generate a slightly smaller table. Finally we use this table as a starting point and generate new tables that meet minimum-depth criteria for the minima that are included. We generate three such tables with minimum depth criteria of 0.05 MeV, 0.2 MeV, and 0.5 MeV. It is the saddle-point energies and energy of minima corresponding to the minimum-depth criterion of 0.2 MeV that are tabulated in the TABLE. There can therefore be some (usually small) differences between the energies of the contour plots and the energy values in the TABLE. Furthermore, in the contour plots we mark minima that are deeper than 0.05 MeV, and their corresponding saddle points. Therefore there may be more minima indicated in the contour GRAPHS 11–112 than are actually tabulated. The absolute energy values in the TABLE and GRAPHS 11–112 can sometimes differ by a few hundred keV, but the relative energy differences between minima and saddle points are much less affected. Because we used the identical procedure to calculate our mass table this approach is necessary and desirable to assure seamless matching between our results here and the corresponding mass table. There may be some small differences between the calculated potentialenergy surfaces shown here and those published earlier. These occur because the heavier nuclei require more grid points in the numerical integrations of the matrix elements due to the larger number of nodes in the wave functions. In the calculation here we have recalculated all potentialenergy surfaces with the larger number of integration points, which may lead to some insignificant differences between the current contour maps and those few published earlier for lighter nuclei. We emphasize again that although we use minimization to reduce our 3-dimensional potential-energy surfaces to two-dimensional, we do it for the sole purpose of plotting contour diagrams for approximate illustration of the structure of the potential-energy surfaces. Actual numbers presented in this article, including those given in the TABLE are determined from considering the full 3D space. The saddle points between minima have been determined by immersion in this full 3D space [11]. # 3 RESULTS OVERVIEW In GRAPH 1 we show four calculated contour maps that illustrate typical features of nuclear potential-energy surfaces, features that vary considerably from nucleus to nucleus. We discuss the surfaces in the clockwise order they are numbered. A very typical situation is illustrated by 154 Sm. There exists only one minimum, the prolate ground state at $\varepsilon_2 = 0.25$ and $\gamma = 0.0$ with energy E = 0.021 MeV. If axially asymmetric shapes had not been considered, we would only have known the energy along the upper ($\gamma = 60^{\circ}$, oblate shapes) and lower ($\gamma = 0^{\circ}$, prolate shapes) lines and incorrectly concluded that an oblate minimum at $\varepsilon_2 = 0.225$ and $\gamma = 60^{\circ}$ and with E = 4.5 MeV also existed, separated from the prolate minimum by a maximum with energy E = 8.2 MeV at spherical shape. However, for other nuclei separate oblate and prolate minima may exist simultaneously, so-called oblate-prolate shape isomerism. This is illustrated by the ⁹⁸Sr potential-energy surface in the second subplot of GRAPH 1. Here one oblate and one prolate minimum are present. The prolate minimum at $\varepsilon_2 = 0.325$ and $\gamma = 0.0^o$ is the deeper minimum with E = 2.225 MeV and is consequently the ground state. A higher minimum, by topographical necessity separated from the lower minimum by a saddle, is located at $\varepsilon_2 = 0.300$ and $\gamma = 60.0$ with E = 4.205 MeV. The axially-asymmetric saddle is located at $\varepsilon_2 = 0.275$ and $\gamma = 40.0^o$ with E = 4.738 MeV. Triple shape coexistence or isomerism is also possible. An experimental observation in ¹⁸⁶Pb of this type of shape isomerism and a corresponding calculated potential-energy surface were published in 2000 [17]. Our calculated potential-energy surface for ¹⁸⁶Pb is very similar to the calculations presented in [17] with a spherical ground state and shallow minima for deformed prolate and oblate shapes. However, as is seen in GRAPH 74 our potential energy for ¹⁸⁶Pb exhibits *five* minima, some of them quite shallow. We show in the third subplot of GRAPH 1 a calculated surface for 70 Kr which exhibits a somewhat different type of triple shape coexistence. Here the ground state at $\varepsilon_2 = 0.325$ and $\gamma = 60.0^o$ with E = 3.476 is oblate. Two shape-isomeric minima are also obtained. The one located at $\varepsilon_2 = 0.200$ and $\gamma = 0.0^o$ with an energy E = 4.143 MeV corresponds to a prolate nuclear shape, whereas at the third, slightly higher minimum at $\varepsilon_2 = 0.375$ and $\gamma = 20.0^o$ with E = 4.185 MeV the nucleus is triaxial in shape. Three saddle points also exist and are indicated by crossed lines. For some nuclei we find that the ground state is axially asymmetric. A typical result, for ¹³⁸Sm, is shown in the fourth subplot of GRAPH 1. There is only one minimum in this surface but if the calculations had been restricted to axially symmetric shapes, one oblate and one prolate minimum would have been found. Neither of these energy minima survive when axial-asymmetric shapes are considered. Both turn out to be saddle points if the plot is reflected to angles outside the range $0 \le \gamma \le 60$. The true minimum is found in the interior of the (ε, γ) plane. In contrast to the previous three cases, the calculated ground-state mass for ¹³⁸Sm is lowered due to the inclusion of triaxial shapes, by about 0.4 MeV. We have previously shown that the agreement between calculated and measured masses is improved when axial asymmetry is taken into account in the calculations [18]. The symmetry properties of the nuclear ground-state shape are perhaps most clearly and simply revealed through characteristics of low-lying collective energy-level spectra. Collective spectra are energy levels that arise due to excitation or motion of the whole nucleus in a coordinated and coherent fashion, in contrast to excitations of individual protons or neutrons into higher singleparticle-type energy levels. Typical collective excitations are vibrations and rotations of the nucleus. In GRAPH 2 we show experimental collective level spectra [19] for four nuclei, representing typical classes of nuclear shapes; a sphere and three types of shapes that break spherical symmetry, namely spheroidal, reflection-asymmetric, and axially-asymmetric (triaxial) shapes. Next to the level spectra we show for these specific nuclei calculated ground-state shapes. The characteristic appearance of these spectra can be understood from quantum mechanics, as implemented through the collective model of Bohr and Mottelson [20, 21]. The Pauli principle and the requirement that the nuclear wave function is anti-symmetric have the consequence that only levels with certain spins (different in the four situations) appear. Some key characteristics are that (a) the spherical spectrum is vibrational with an expected energy ratio between the second and first excited level, $E(4^+)/E(2^+)$, close to 2, and (b) the spheroidal spectrum is rotational with an energy ratio $E(4^+)/E(2^+)$ close to [4(4+1)]/[2(2+1)] = 10/3 = 3.33. Furthermore, the laws of quantum mechanics have the consequence that spherical nuclei cannot rotate and spheroidal nuclei can only rotate
around an axis perpendicular to the symmetry axis. When reflection symmetry is broken additional, low-lying negative-parity states appear and when axial symmetry is broken γ bands with the characteristics shown in GRAPH 2 will appear. In GRAPH 2 the spheroidal spectrum corresponds to an energy surface similar to subplot (1) in GRAPH 1; the axially asymmetric spectrum corresponds to a structure similar to subplot (4). Shape isomers are not necessarily associated with some characteristic symmetry breaking, except spheroidal deviations from a spherical shape. But for even-even nuclei with calculated low-lying shape isomers one expects to experimentally observe low-lying 0^+ energy levels corresponding to the energies of the shape-isomer minima. The most common expression of shape isomerism (in even-even nuclei) is that there is one 0^+ ground state and one additional, low-lying 0^+ state. This situation is thought to correspond in a nucleus to two different shape configurations, corresponding to the distinct minima in calculated potential-energy surfaces. In GRAPH 3 we show a few low-lying levels in each of four even-even Kr isotopes and the shapes corresponding to the two minima present in our calculated potential-energy surfaces. We showed in [11] that the energy, relative to the ground state, of the higher of the two calculated minima compares very well to the excitation energy of the second 0^+ level seen in the experimental spectra. As we pointed out in [11], this is a zero-order model; to more accurately calculate the energy levels one needs to go beyond mean field and account for mixing between wave functions corresponding to the two shape configurations. Rather elaborate calculations implementing such features have been presented, for example in [22, 23, 24, 25, 26, 27, 28, 29]. These efforts mostly utilize purely microscopic models based on two-body effective interactions or density-functional theories. Unfortunately, as of yet such models obtain root-mean-square deviations with respect to experimental masses that are four or more times larger than those resulting from our model. Until this situation improves, approaches such as the one we use should be more reliable for global predictions of the sort we present. How many nuclei of the almost 9000 represented in our mass table have additional minima in the potential-energy surface, in addition to the ground-state minimum? Because we here focus on ground-state-like minima we only consider deformations with $\epsilon_2 \leq 0.45$. The number of minima that are present in the calculated potential-energy surface of a given nucleus depends on the criteria we select to permit the minimum to be counted as a candidate for a shape-coexisting minimum. In GRAPH 4 we use rather generous criteria. We count all minima that are deeper than 0.05 MeV and at an energy less than 5.0 MeV. By depth 0.05 MeV we mean that the minimum is surrounded by ridges on which all points lie at least 0.05 MeV above the bottom of the minimum. With the above criteria shape isomerism is fairly common. However, for calculated shape-isomeric minima to actually manifest themselves as observable, low-lying 0^+ states the criteria need to be stricter. In GRAPHS 5 and 6 we have used stricter criteria, namely excitation energy 2.0 MeV and depth 0.2 MeV and excitation energy 1.0 MeV and depth 0.2 MeV, respectively. In this case candidates for shape isomerism are mainly restricted to 4 localized regions: $A \approx 80$ nuclei, $A \approx 100$ nuclei, neutron-deficient Pb nuclei, and neutron-deficient actinide nuclei. In addition some nuclei near the $N \approx 120$ line may be reachable in experiments. We can impose additional criteria on which shape isomers we select. In GRAPHS 7 and 8 we show the number of minima with at least one minimum spherical for excitation energies less than 2 MeV and 1 MeV respectively. In GRAPHS 9 and 10 we require that at least one minimum is triaxial. In GRAPHS 11-112 we present 1224 contour diagrams of most even-even nuclei between the proton and neutron drip lines, from ³²Ne to ²⁸²118. Here more details about the structure of the potential-energy surfaces and their shape-isomeric minima are visible. It is interesting to study the transitions from magic, spherical nuclei to well-deformed nuclei through a succession of neutron numbers. Finally, we have in the TABLE tabulated the energy and deformations of all minima deeper than 0.2 MeV and the energies and deformations of the optimum saddle points between all pairs of minima. #### Acknowledgements This work is the result of an extensive, long-term collaboration. P. M. is grateful to the Department of Mathematical Physics, Lund Institute of Technology, for hospitality during several visits in 2002–2010. T. I., R. B., and H. S. would like to thank LANL for hospitality during visits in 2002–2010. This work was supported by several travel grants for P. M. to JUSTIPEN (Japan-U. S. Theory Institute for Physics with Exotic Nuclei) under grant number DE-FG02-06ER41407 (U. Tennessee). This work was carried out under the auspices of the National Nuclear Security Administration of the U. S. Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. ## References - [1] P. Möller, J. R. Nix, W. D. Myers, and W. J. Swiatecki, Atomic Data Nucl. Data Tables 59 (1995) 185. - [2] M. Bolsterli, E. O. Fiset, J. R. Nix, and J. L. Norton, Phys. Rev. C 5 (1972) 1050. - [3] V. M. Strutinsky, Nucl. Phys. A95 (1967) 420. - [4] V. M. Strutinsky, Nucl. Phys. A122 (1968) 1. - [5] H. J. Lipkin, Ann. Phys. (N. Y.) 9 (1960) 272. - [6] Y. Nogami, Phys. Rev. **134** (1964) B313. - [7] H. C. Pradhan, Y. Nogami, and J. Law, Nucl. Phys. A201 (1973) 357. - [8] P. Möller and J. R. Nix, Nucl. Phys. **A536** (1992) 20. - [9] P. Möller, A. J. Sierk, and A. Iwamoto, Phys. Rev. Lett. **92** (2004) 072501. - [10] P. Möller, R. Bengtsson, B. G. Carlsson, P. Olivius, T. Ichikawa, H. Sagawa, and A. Iwamoto Atomic Data and Nuclear Data Tables 94 (2008) 758. - [11] P. Möller, A. J. Sierk, R. Bengtsson, H. Sagawa, and T. Ichikawa, Phys. Rev. Lett. 103 (2009) 212501. - [12] WEB URL will be provided at proof time. - [13] P. Möller, D. G. Madland, A. J. Sierk, and A. Iwamoto, Nature 409 (2001) 785. - [14] P. Möller, A. J. Sierk, T. Ichikawa, A. Iwamoto, R. Bengtsson, H. Uhrenholt, and S. Åberg, Phys. Rev. C 79 (2009) 064304. - [15] P. Möller and A. Iwamoto, Proc. Conf. on Nuclear Shapes and Motions. Symposium in Honor of Ray Nix, 25–27 Oct. 1998, Sante Fe, NM, USA Acta Physica Hungarica, New Series, 10 (1999) 241. - [16] P. Möller and A. Iwamoto, Phys. Rev. C **61** (2000) 047602. - [17] A. N. Andreyev, M. Huyse, P. Van Duppen, L. Weissman, D. Ackermann, J. Gerl, F. P. Heßberger, S. Hofmann, A. Kleinböhl, G. Münzenberg, S. Reshitko, C. Schlegel, H. Schaffner, P. Cagarda, M. Matos, S. Saro, A. Keenan, C. Moore, C. D. O'Leary, R. D. Page, M. Taylor, H. Kettunen, M. Leino, A. Lavrentiev, R. Wyss, and K. Heyde, Nature 405 (2000) 430. - [18] P. Möller, R. Bengtsson, B. G. Carlsson, P. Olivius, and T. Ichikawa, Phys. Rev. Lett. 97 (2006) 162502. - [19] Table of isotopes, 8th edition, edited by R. B. Firestone and V. S. Shirley (Wiley, New York, 1996). - [20] A. Bohr, K. Danske Vidensk. Sels. mat.-fy. Medd **26** No. 14 (1952). - [21] A. Bohr and B. R. Mottelson, K. Danske Vidensk. Sels. mat.-fy. Medd 27 No. 16 (1953). - [22] M. Bender, P. Bonche, T. Duguet, and P.-H. Heenen, Phys. Rev. C 69 (2004) 064303. - [23] M. Bender, G. F. Bertsch, and P.-H. Heenen, Phys. Rev. Lett 94 (2005) 102503. - [24] M. Bender, G. F. Bertsch, and P.-H. Heenen, Phys. Rev. C 69 (2004) 034340. - [25] M. Bender, P. Bonche, and P.-H. Heenen, Phys. Rev. C 74 (2006) 024312. - [26] A. Petrovici, K. W. Schmid, and A. Faessler, Nucl. Phys. A 605 (1996) 290. - [27] A. Petrovici, K. W. Schmid, and A. Faessler, Nucl. Phys. A 665 (2000) 333. - [28] N. Hinohara, T. Nakatsukasa, M. Matsuo, and K. Matsuyanagi, Phys. Rev. C 80 (2009) 014305. - [29] J. -P.-Delaroche, M. Girod, J. Libert, H. Goutte, S. Hilaire, S. Péru, N. Pillet, and G. F. Bertsch, Phys. Rev. C 81 (2010) 014303. - [30] E. Bouchez, I. Matea, W. Korten, F. Becker, B. Blank, C. Borcea, A. Buta, A. Emsallem, G. de France, J. Genevey, F. Hannachi, K. Hauschild, A. Hürstel, Y. Le Coz, M. Lewitowicz, R. Lucas, F. Negoita, F. de Oliveira Santos, D. Pantelica, J. Pinston, P. Rahkila, M. Rejmund, M. Stanoiu, and Ch. Theisen, Phys. Rev. Lett. 90 (2003) 082502. # EXPLANATION OF GRAPHS - **GRAPH 1:** Four calculated potential-energy surfaces versus ε_2 and γ (minimized with respect to ε_4). Minima are indicated by colored round dots and saddle points by pairs of crossed lines. The numbers on a blue background give the energy in MeV of the thicker contour lines which are spaced 1 MeV apart; the spacing between the thinner lines is 0.2 MeV. The circular arcs starting at $\epsilon_2 = 0.10$, 0.20, 0.30, and 0.40 and the straight lines ending at $\epsilon_2 = 0.45$ and $\gamma = 20$ and 40 indicate the coordinate grid. To obtain a suitable range of energy values we have, following standard practice, subtracted the energy obtained for a spherical shape in the macroscopic part of the model. The surfaces exhibit typical structures that we obtain in our current investigation. Each point in a surface corresponds to the energy of a specific nuclear shape. The lower left tip of the pie-like plot corresponds to a spherical shape. Points along the $\gamma = 60^{\circ}$ straight line correspond to oblate shapes (like a discus) and those along the lower $\gamma = 0^{\circ}$ straight line to prolate shapes (like an American football). The energy values in the interior of the pie are calculated for axially-asymmetric nuclear shapes (a somewhat simplified analogy is that these points correspond to shapes that result from standing on a football). Shapes corresponding to the three minima and one of
the saddle points of ⁷⁰Kr are shown at the top in the colors of the symbols at their respective locations in the contour plot. Shapes at equivalent locations in the other plots are similar, but not identical, due to possible differences in the ε_4 shape coordinate. The axially asymmetric minimum in subplot (3), indicated by a red dot can communicate with the prolate minimum indicated by a green-colored dot across the saddle indicated by short, crossed, gray lines at $\varepsilon_2 = 0.3$ and $\gamma = 0.0$. However, our water-flow analysis program has identified the saddle points indicated by the larger crossedlines symbols as defining a path between the two minima with a lower maximum energy than the more direct path. For this particular nucleus we can see from the plot that the energy maxima on these two paths only differ by a few tens of keV at most. It is an interesting conjecture, that we at this point are not able to prove generally, that the number of saddle points needed to define optimal paths between n minima is n-1, not $n \times (n-1)/2$. - GRAPH 2: Typical collective level spectra for a spherical nucleus and for three nuclei with shapes representing the most important types of deviation from spherical symmetry. Each level is labeled by its energy in keV relative to the ground state and its spin and parity. Nuclear ground-state shapes calculated in the macroscopic-microscopic approach both in Ref. [1] and here are shown next to the level spectra (from Ref. [19]). The observed level spectra are consistent with what is expected from the calculated shape asymmetries. Each shape is shown from two viewing angles; one viewing angle is identical for all four shapes, the other is chosen to most clearly display the asymmetry of the shape. In subplots (3) and (4) the levels specifically associated with the broken symmetry have for clarity been shifted towards the right. - **GRAPH 3:** Observed low-lying energy levels in four Kr isotopes. In each of these even-even nuclei two low-lying 0⁺ states are observed. For ⁷²Kr the ground-state shape is oblate; for the other three isotopes it is prolate, whereas it is the shape-isomeric state that is oblate. The figure is based on information in Ref. [30] and references quoted therein. For a more detailed discussion see [11]. In each subplot we show the calculated shape corresponding to the oblate minimum (on the left) and the prolate minimum (to the right). - **GRAPH 4:** Number of minima deeper than 0.05 MeV and excitation energy less than 5.0 MeV for 5900 nuclei from A = 31 to N = 160. - **GRAPH 5:** Number of minima deeper than 0.2 MeV and excitation energy less than 2.0 MeV for 5900 nuclei from A = 31 to N = 160. - **GRAPH 6:** Number of minima deeper than 0.2 MeV and excitation energy less than 1.0 MeV for 5900 nuclei from A = 31 to N = 160. - **GRAPH 7:** Number of minima deeper than 0.2 MeV and excitation energy less than 2.0 MeV for 5900 nuclei from A = 31 to N = 160, with at least one minimum corresponding to a spherical shape. - **GRAPH 8:** Number of minima deeper than 0.2 MeV and excitation energy less than 1.0 MeV for 5900 nuclei from A = 31 to N = 160, with at least one minimum corresponding to a spherical shape. - **GRAPH 9:** Number of minima deeper than 0.2 MeV and excitation energy less than 2.0 MeV for 5900 nuclei from A = 31 to N = 160, with at least one minimum corresponding to a triaxial shape. - **GRAPH 10:** Number of minima deeper than 0.2 MeV and excitation energy less than 1.0 MeV for 5900 nuclei from A=31 to N=160, with at least one minimum corresponding to a triaxial shape. - **GRAPHS 11–122:** Calculated potential-energy surfaces for 1224 even-even nuclei from A=32 to A=290 from the proton drip line to close to the neutron drip line. The contour maps are grouped together 12 on each page. Every fifth contour line is marked with the energy relative to the spherical macroscopic energy. Graph 1 Graph 2 Graph 3 Graph 11 Graph 12 Graph 13 Graph 14 Graph 15 Graph 16 Graph 17 Graph 18 Graph 19 Graph 20 Graph 21 Graph 22 Graph 23 Graph 24 Graph 25 Graph 26 Graph 27 Graph 28 Graph 29 Graph 30 Graph 31 Graph 32 Graph 33 Graph 34 Graph 35 Graph 36 Graph 37 Graph 38 Graph 39 Graph 40 Graph 41 Graph 42 Graph 43 Graph 44 Graph 45 Graph 46 Graph 47 Graph 48 Graph 49 Graph 50 Graph 51 Graph 52 Graph 53 Graph 54 Graph 55 Graph 56 Graph 57 Graph 58 Graph 59 Graph 60 Graph 61 Graph 62 Graph 63 Graph 64 Graph 65 Graph 66 Graph 67 Graph 68 Graph 69 Graph 70 Graph 71 Graph 72 Graph 73 Graph 74 Graph 75 Graph 76 Graph 77 Graph 78 Graph 79 Graph 80 Graph 81 Graph 82 Graph 83 Graph 84 Graph 85 Graph 86 Graph 87 Graph 88 Graph 89 Graph 90 Graph 91 Graph 92 Graph 93 Graph 94 Graph 95 Graph 96 Graph 97 Graph 98 Graph 99 Graph 100 Graph 101 Graph 102 Graph 103 Graph 104 Graph 105 Graph 106 Graph 107 Graph 108 Graph 109 Graph 110 Graph 111 Graph 112 ## EXPLANATION OF TABLE Table Calculated energies and deformations of potential-energy-surface minima and saddles. **Z** Proton number. The table is ordered by increasing proton number. The corresponding chemical symbol of each named element is given in parentheses. N Neutron number. A Mass number. ϵ_2 Calculated quadrupole deformation in the Nilsson perturbed-spheroid parameterization of minimum or saddle. ϵ_4 Calculated hexadecapole deformation in the Nilsson perturbed-spheroid parameterization of minimum or saddle. γ Calculated gamma deformation in the Nilsson perturbed-spheroid parameterization of minimum or saddle. E Calculated energy of minimum or saddle. $E_{\rm sad}$ Saddle height relative to the higher of the two minima. We only present nuclei for which we have found two or more minima. Furthermore we discard all minima that are less than 0.2 MeV deep. Minima of nuclei where only one minimum occurs are tabulated in Ref. [1] except if the minimum is axially asymmetric, then it is tabulated in Ref. [10]. In the table we present each pair of minima and the saddle separating them on one line. So if there are three minima in the surface there will be 3 pairs tabulated, if there are 4 there will be 6 pairs tabulated. In the deformation space we investigate here the maximum number of minima deeper than 0.2 MeV that we find is 4, as is seen in GRAPH 5. **Table**Calculated energies and deformations of potential-energy-surface minima and saddles. See page 125 for explanation of Table. | | Nucleus | Minim | um | Sa | ddle | | Mir | imum | S.H. | |--|--------------------|---------------------------|-------------|---------------------------|----------|-------|---------------------------|----------|-------------------| | | \overline{N} A | ϵ_2 ϵ_4 | γ E | ϵ_2 ϵ_4 | γ | E | ϵ_2 ϵ_4 | γ | E $E_{\rm sad}$ | | 25 34 | | | (MeV) | | | (MeV) | | (1) | MeV) (MeV) | | $\begin{array}{c} 27 36 0.350 0.12 0.0 -0.70 \\ 28 37 0.350 0.12 0.0 -0.83 \\ 2 2 10 \ (\text{Ne}) \\ 27 37 0.275 -0.08 35.0 -0.58 \\ 28 38 0.350 0.12 0.0 -1.07 \\ 29 38 0.350 0.12 0.0 -1.07 \\ 20 0.275 -0.08 35.0 -0.58 \\ 38 0.350 0.12 0.0 -1.07 \\ 0.225 -0.02 17.5 -0.36 \\ 0.300 -0.12 60.0 -1.13 \\ 0.7 0.275 -0.08 35.0 -0.58 \\ 28 38 0.350 0.12 0.0 -1.07 \\ 0.225 -0.02 17.5 -0.36 \\ 0.300 -0.12 60.0 -1.13 \\ 0.7 0.4 \\ 2 11 \ (\text{Na}) \\ 20 31 0.350 -0.06 2.5 -0.63 \\ 0.325 -0.04 2.5 2.90 \\ 0.325 -0.00 0.00 0.00 0.0 0.1 39 \\ 0.227 38 0.275 -0.08 32.5 0.54 \\ 0.275 -0.06 30.0 0.76 \\ 0.325 -0.04 0.350 0.12 0.0 -0.38 \\ 0.32 43 0.425 -0.06 32.5 0.23 \\ 0.235 -0.04 2.5 0.41 \\ 0.325 0.04 0.0 0.57 \\ 0.227 38 0.275 -0.08 32.5 0.25 \\ 0.225 -0.04 25.0 0.41 \\ 0.325 0.04 0.0 0.05 \\ 0.325 -0.06 30.0 0.54 \\ 0.325 0.012 0.0 -0.38 \\ 0.32 43 0.425 -0.04 0.0 0.67 \\ 0.325 -0.06 17.5 0.89 \\ 0.225 0.02 25.0 0.11 \\ 0.2 2 2 12 \ (\text{Mg}) \\ 25 37 0.275 -0.08 32.5 0.75 \\ 0.285 0.04 0.275 -0.06 30.0 0.95 \\ 0.275 -0.08 0.04 0.0 0.17 \\ 0.227 39
0.275 -0.08 30.5 0.42 \\ 0.275 -0.06 30.0 0.95 \\ 0.285 -0.04 2.5 0.04 0.0 0.17 \\ 0.29 41 0.350 0.12 0.0 -0.28 \\ 0.250 -0.04 27.5 0.30 \\ 0.350 0.12 0.0 -0.70 \\ 1.0 29 41 0.350 0.12 0.0 -0.28 \\ 0.250 -0.04 12.5 0.01 \\ 0.275 -0.10 60.0 -0.40 \\ 0.28 2 13 \ (\text{M}) \\ 25 38 0.275 -0.08 32.5 1.16 \\ 0.250 -0.06 30.0 1.43 \\ 0.250 0.04 12.5 0.01 0.275 -0.10 60.0 -0.70 \\ 0.2 2 2 13 \ (\text{M}) \\ 25 38 0.275 -0.08 32.5 1.16 \\ 0.250 0.00 0.08 0.0 0.67 \\ 0.325 -0.06 0.0 0.75 \\ 0.250 0.00 0.00 0.0 0.0 0.0 0.0 1.11 \\ 0.2 2 2 16 \ (\text{S}) \\ 2 14 \ (\text{S}) \\ 38 52 0.400 0.04 60.0 1.45 0.375 0.00 0.0 0.63 $ | | | | | | | | | | | $ \begin{array}{c} 28 37 0.350 0.12 0.0 -0.83 0.325 0.12 0.0 -0.43 0.275 -0.10 60.0 -1.27 0.4 \\ \mathbf{Z} = 10 \ (\mathbf{Ne}) \\ \mathbf{Z} = 7 37 0.275 -0.08 35.0 -0.58 0.225 -0.10 30.0 -0.25 0.350 0.12 0.0 -0.95 0.3 \\ 28 38 0.350 0.12 0.0 -1.07 0.225 -0.02 17.5 -0.36 0.300 -0.12 60.0 -1.13 0.7 \\ 31 41 0.425 -0.06 2.5 -0.33 0.350 -0.08 17.5 0.13 0.125 0.04 47.5 -1.05 0.4 \\ \mathbf{Z} = 11 \ (\mathbf{Na}) \\ \mathbf{Z} = 11 \ (\mathbf{Na}) \\ \mathbf{Z} = 31 0.350 -0.06 2.5 2.65 0.325 -0.04 2.5 2.90 0.000 0.00 0.0 0.1 39 0.2 \\ 26 37 0.275 -0.08 32.5 0.54 0.275 -0.06 30.0 0.76 0.375 0.04 0.0 0.24 0.2 \\ 27 38 0.275 -0.06 32.5 0.23 0.250 -0.06 30.0 0.76 0.375 0.04 0.0 0.24 0.2 \\ 28 39 0.300 -0.12 57.5 -0.25 0.225 -0.04 25.0 0.41 0.350 0.12 0.0 -0.38 0.3 \\ 32 43 0.425 -0.04 0.0 0.67 0.325 -0.04 25.0 0.41 0.350 0.12 0.0 -0.38 0.3 \\ 32 43 0.425 -0.04 0.0 0.67 0.325 -0.06 17.5 0.89 0.225 0.02 25.0 0.11 0.2 \\ \mathbf{Z} = 12 \ (\mathbf{Mg}) \\ \mathbf{Z} = 37 0.275 -0.08 32.5 0.75 0.275 -0.06 30.0 0.95 0.275 0.02 0.0 0.43 0.2 \\ 26 38 0.275 -0.08 32.5 0.42 0.275 -0.06 30.0 0.63 0.350 0.12 0.0 0.43 0.2 \\ 27 39 0.275 -0.08 32.5 0.42 0.275 -0.06 30.0 0.63 0.350 0.12 0.0 0.44 0.2 \\ 29 41 0.350 0.12 0.0 -0.69 0.225 -0.02 2.5 0.30 0.350 0.12 0.0 -0.40 0.2 \\ \mathbf{Z} = 13 \ (\mathbf{AI}) \\ \mathbf{Z} = 14 \ (\mathbf{SI}) (\mathbf{O}) \\ \mathbf{Z} = 0.00 0.04 0.00$ | 27 37 0.275 -0.08 35.0 -0.58 0.225 -0.10 30.0 -0.25 0.350 0.12 0.0 -0.95 0.3 28 38 0.350 0.12 0.0 -1.07 0.225 -0.02 17.5 -0.36 0.300 -0.12 60.0 -1.13 0.7 31 41 0.425 -0.06 2.5 -0.33 0.350 -0.08 17.5 0.13 0.125 0.04 47.5 -1.05 0.4 \[Z = 11 \crim{(Na)}\] 20 31 0.350 -0.06 2.5 2.65 0.325 -0.04 2.5 2.90 0.000 0.00 0.0 0.1 1.39 0.2 26 37 0.275 -0.08 32.5 0.54 0.275 -0.06 30.0 0.76 0.375 0.04 0.0 0.24 0.2 27 38 0.275 -0.06 32.5 0.23 0.250 -0.06 30.0 0.54 0.350 0.12 0.0 -0.38 0.3 28 39 0.300 -0.12 57.5 -0.25 0.225 -0.04 25.0 0.41 0.350 0.12 0.0 -0.53 0.6 32 43 0.425 -0.04 0.0 0.67 0.325 -0.06 17.5 0.89 0.225 0.02 25.0 0.11 0.2 \[Z = 12 \crim{(Mg)}\] 25 37 0.275 -0.08 32.5 0.75 0.75 0.275 -0.06 30.0 0.95 0.275 0.02 0.0 0.43 0.2 26 38 0.275 -0.06 32.5 0.42 0.275 -0.06 30.0 0.63 0.300 0.40 0.0 0.17 0.2 27 39 0.275 -0.08 40.0 0.09 0.250 -0.04 27.5 0.43 0.350 0.12 0.0 -0.54 0.3 28 40 0.325 -0.12 60.0 -0.69 0.225 -0.02 22.5 0.30 0.350 0.12 0.0 -0.54 0.3 28 40 0.325 -0.12 60.0 -0.69 0.225 -0.02 22.5 0.30 0.350 0.12 0.0 -0.54 0.3 28 40 0.325 -0.12 60.0 -0.69 0.225 -0.02 22.5 0.30 0.350 0.12 0.0 -0.70 1.0 29 41 0.350 0.12 0.0 0.28 0.250 0.04 12.5 0.01 0.275 -0.10 60.0 -0.40 0.2 \[Z = 13 \crim{(Al)}\] 25 38 0.275 -0.08 32.5 1.16 0.250 -0.06 30.0 1.03 0.275 -0.06 32.5 0.79 0.2 28 41 0.350 0.12 0.0 0.24 0.250 0.06 1.03 0.275 -0.06 32.5 0.79 0.2 28 41 0.350 0.12 0.0 0.44 0.200 0.02 15.0 0.76 0.300 -0.10 47.5 0.16 0.3 28 42 0.350 0.12 0.0 0.24 0.250 0.06 0.0 0.67 0.325 -0.12 57.5 -0.70 0.4 \[Z = 14 \crim{(Si)}\] 28 42 0.350 0.12 0.0 0.42 0.250 0.08 0.0 0.63 0.325 -0.12 57.5 -0.70 0.4 \[Z = 16 \(\mathred{(S)}\) 38 52 0.400 0.04 0.0 3.44 0.300 0.08 32.5 1.94 0.400 0.10 0.0 1.48 0.4 \[Z = 16 \(\mathred{(S)}\) 40 56 0.350 0.08 30.0 1.74 0.300 0.08 32.5 1.98 0.225 0.10 57.5 1.88 0.2 \[38 50 0.375 0.04 0.0 3.44 0.300 0.06 15.5 3.88 0.225 0.10 57.5 1.88 0.2 \[50 0.400 0.02 0.0 3.68 0.0 1.94 0.275 0.06 32.5 1.88 0.250 0.10 55.0 1.55 0.2 \[Z = 18 \((\mathred{(Ar)}\) 37 55 0.400 0.02 0.0 3.68 0.375 0.04 27.5 4.13 0.225 0.10 60.0 | | | 0.0 -0.83 | 0.325 0.12 | 2 0.0 | -0.43 | 0.275 -0.10 | 0 60.0 - | -1.27 0.40 | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | ` , | | | | | | | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 20 31 0.350 -0.06 2.5 2.65 0.325 -0.04 2.5 2.90 0.000 0.00 0.0 1.39 0.2 26 37 0.275 -0.08 32.5 0.54 0.275 -0.06 30.0 0.76 0.375 0.04 0.0 0.24 0.2 27 38 0.275 -0.06 32.5 0.23 0.250 -0.06 30.0 0.54 0.350 0.12 0.0 -0.38 0.3 28 39 0.300 -0.12 57.5 -0.25 0.225 -0.04 25.0 0.41 0.350 0.12 0.0 -0.53 0.6 32 43 0.425 -0.04 0.0 0.67 0.325 -0.06 17.5 0.89 0.225 0.02 25.0 0.11 0.2 Z = 12 (Mg) 25 37 0.275 -0.08 32.5 0.42 0.275 -0.06 30.0 0.95 0.275 0.02 0.0 0.43 0.2 26 38 0.275 -0.08 32.5 0.42 0.275 -0.06 30.0 0.95 0.275 0.02 0.0 0.43 0.2 27 39 0.275 -0.08 40.0 0.09 0.250 -0.04 27.5 0.43 0.350 0.12 0.0 -0.54 0.3 28 40 0.325 -0.12 60.0 -0.69 0.225 -0.02 22.5 0.30 0.350 0.12 0.0 -0.54 0.3 28 40 0.325 -0.12 60.0 -0.69 0.225 -0.02 22.5 0.30 0.350 0.12 0.0 -0.70 1.0 29 41 0.350 0.12 0.0 -0.28 0.250 0.04 12.5 0.01 0.275 -0.10 60.0 -0.40 0.2 Z = 13 (Al) 25 38 0.275 -0.08 32.5 1.16 0.250 -0.06 30.0 1.43 0.250 0.00 0.0 1.11 0.2 26 39 0.250 0.02 0.0 0.83 0.250 -0.06 30.0 1.43 0.250 0.00 0.0 1.11 0.2 26 39 0.250 0.02 0.0 0.83 0.250 -0.06 30.0 1.33 0.275 -0.06 32.5 0.79 0.2 27 40 0.350 0.12 0.0 0.44 0.200 0.02 15.0 0.76 0.300 -0.10 47.5 0.16 0.3 28 41 0.350 0.12 0.0 0.44 0.200 0.02 15.0 0.76 0.300 -0.10 47.5 0.16 0.3 28 42 0.350 0.12 0.0 0.44 0.250 0.06 0.0 0.67 0.325 -0.12 60.0 -1.37 0.2 38 52 0.400 0.04 60.0 1.45 0.375 0.00 32.5 1.94 0.400 0.10 0.0 1.48 0.4 Z = 16 (S) 40 56 0.350 0.08 30.0 1.74 0.300 0.08 32.5 1.98 0.225 0.10 60.0 1.74 0.2 Z = 17 (CI) 37 54 0.375 0.04 0.0 3.44 0.300 0.06 12.5 3.68 0.225 0.10 55.0 1.76 0.2 38 55 0.375 0.04 0.0 3.44 0.300 0.06 15.0 3.38 0.225 0.10 57.5 1.80 0.3 41 58 0.225 0.04 30.0 1.94 0.275 0.06 32.5 1.88 0.225 0.10 57.5 1.80 0.3 41 58 0.225 0.04 30.0 1.94 0.275 0.06 32.5 1.88 0.250 0.10 55.0 1.55 0.2 Z = 18 (Ar) 37 55 0.400 0.02 0.0 3.68 0.375 0.04 27.5 4.13 0.225 0.10 60.0 1.62 0.4 | | | 2.5 -0.33 | 0.350 -0.08 | 3 17.5 | 0.13 | 0.125 0.04 | 4 47.5 - | -1.05 0.46 | | 26 37 | | | | | | | | | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | | $ \begin{array}{c} 32 43 0.425 -0.04 0.0 0.67 \\ Z = 12 \; (\mathrm{Mg}) \\ 25 37 0.275 -0.08 32.5 0.75 \\ 26 38 0.275 -0.06 32.5 0.42 \\ 27 39 0.275 -0.08 40.0 0.09 \\ 29 41 0.350 0.12 0.0 -0.28 \\ 29 38 0.275 -0.08 32.5 1.16 \\ 20 38 0.275 -0.08 32.5 1.16 \\ 20 38 0.275 -0.08 32.5 0.12 0.0 -0.28 \\ 20 38 0.275 -0.08 40.0 0.09 \\ 20 41 0.350 0.12 0.0 -0.28 \\ 20 41 0.350 0.12 0.0 -0.28 \\ 20 41 0.350 0.12 0.0 0.28 \\ 20 41 0.350 0.12 0.0 0.28 \\ 20 40 0.325 -0.08 32.5 1.16 \\ 20 41 0.350 0.12 0.0 0.08 0.250 -0.06 30.0 \\ 20 41 0.350 0.12 0.0 0.08 0.250 0.04 12.5 \\ 20 39 0.250 0.02 0.0 0.83 \\ 20 20 0.02 0.0 0.83 \\ 20 40 0.350 0.12 0.0 0.44 \\ 20 0.02 15.0 0.76 \\ 20 40 0.350 0.12 0.0 0.44 \\ 20 0.02 15.0 0.76 \\ 20 300 -0.10 47.5 0.16 \\ 20 38 52 0.400 0.04 60.0 1.45 \\ 20 0.375 0.00 32.5 1.94 \\ 20 40 0.350 0.12 0.0 0.42 \\ 20 250 0.08 0.0 0.63 \\ 20 0.08 0.0 0.10 0.0 0.14 \\ 20 0.08 0.0 0.08 0.0 0.63 \\ 20 0.08 0.0 0.10 0.0 0.14 \\ 20 0.08 0.0 0.08 0.0 0.06 \\ 20 0.08 0.0 0.09 0.00 0.0 0.14 \\ 20 0.08 0.0 0.08 0.0 0.09 0.00 0.0 0.14 \\ 20 0.08 0.0 0.08 0.0 0.08 0.0 0.09 0.00 0.0 0.09 \\ 20 0.08 0.0 0.08 0.0 0.08 0.0 0.09 0.00 0.00 0.00 \\ 20 0.08 0.0 0.08 0.0 0.08 0.00 0.00 0.00 0.00 0.00 \\ 20 0.08 0.0 0.08 0.0 0.08 0.00 0.00 0.00 0.00 0.00 \\ 20 0.08 0.0 0.08 0.0 0.08 0.00 0.00 0.00 0.00 0.00 \\ 20 0.08 0.0 0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 \\ 20 0.08 0.0 0.08 0.00 0.$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | 0.0 0.67 | 0.325 -0.06 | 5 17.5 | 0.89 | 0.225 - 0.02 | 2 25.0 | 0.11 0.23 | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | ` _, | | | | | | | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | 0.0 -0.28 | 0.250 - 0.04 | 1 12.5 | 0.01 | 0.275 - 0.10 |) 60.0 - | -0.40 0.29 | | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | | Z = 14 (Si) | | | | | | | | | | | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | 0.0 0.24 | 0.250 0.06 | 6 0.0 | 0.67 | 0.325 - 0.12 | 2 57.5 - | -0.70 0.44 | | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | | ` ' | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | 1.45 | 0.375 0.00 | 32.5 | 1.94 | 0.400 - 0.10 |) 0.0 | 1.48 0.46 | | | | ` ' | | | | | | | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | 30.0 1.74 | 0.300 - 0.08 | 32.5 | 1.98 | 0.225 0.10 | 0 60.0 | 1.74 0.24 | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | | $42 ext{ } 59 ext{ } 0.275 ext{ } 0.06 ext{ } 30.0 ext{ } 1.62 ext{ } 0.275 ext{ } 0.06 ext{ } 32.5 ext{ } 1.88 ext{ } 0.250 ext{ } 0.10 ext{ } 55.0 ext{ } 1.55 ext{ } 0.25 ext{ } 0.250 ext{ } 0.10
ext{ } 60.0 ext{ } 1.55 ext{ } 0.25 ext{ } 0.250 ext{ } 0.10 ext{ } 60.0 ext{ } 1.62 ext{ } 0.25 ext{ } 0.250 ext$ | | | | | | | | | | | Z = 18 (Ar)
37 55 0.400 0.02 0.0 3.68 0.375 0.04 27.5 4.13 0.225 0.10 60.0 1.62 0.4 | | | | | | | | | | | 37 55 0.400 0.02 0.0 3.68 0.375 0.04 27.5 4.13 0.225 0.10 60.0 1.62 0.4 | | | 30.0 1.62 | 0.275 0.06 | 5 32.5 | 1.88 | 0.250 - 0.10 |) 55.0 | 1.55 0.26 | | | | , , | | | | | | | | | 38 56 0.400 0.02 0.0 3.35 0.350 0.04 25.0 3.85 0.200 0.10 60.0 1.60 0.5 | | | | | | | | | | | | | | 0.0 3.35 | 0.350 0.04 | 1 25.0 | 3.85 | 0.200 0.10 | 0.60.0 | 1.60 0.50 | | $Z=19 \; ({ m K} \;)$ | 0.0 3.94 | 0.375 0.02 | 2 27.5 | 4.19 | 0.050 0.03 | 2 60.0 | 2.05 0.25 | | $Z=20~{ m (Ca)}$ | | • • | 32.5 1.20 | 0.300 -0.02 | 2 32.5 | 1.41 | 0.000 0.00 | 0.0 - | -0.02 0.21 | | $Z=21 \; { m (Sc)}$ | | | | | | | | | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 12 33 | 0.350 -0.06 | 2.5 0.55 | 0.325 -0.08 | 3 12.5 | 0.88 | 0.100 -0.00 | 6 0.0 | 0.39 0.33 | Table (continued) | Nu | cleus | | Mini | mum | | | Sac | ldle | | | Mini | mum | | S.H. | |----|----------------|--------------|--------------|----------|-------|--------------|--------------|----------|-------|--------------|--------------|----------|-------|---------------| | N | \overline{A} | ϵ_2 | ϵ_4 | γ | E | ϵ_2 | ϵ_4 | γ | E | ϵ_2 | ϵ_4 | γ | E | $E_{\rm sad}$ | | | | | | | (MeV) | | | | (MeV) | | | | (MeV) | (MeV) | | | Z=21 | , , | | | | | | | | | | | | | | 21 | 42 | 0.425 | | 32.5 | 5.34 | 0.325 | | 32.5 | 5.62 | | -0.02 | | 1.29 | 0.27 | | 39 | 60 | 0.400 | | 27.5 | 4.53 | 0.325 | | 40.0 | 4.76 | 0.050 | | 60.0 | 2.40 | 0.23 | | 40 | 61 | 0.350 | | 30.0 | 4.24 | 0.300 | | 30.0 | 4.48 | 0.025 | | 60.0 | 1.89 | 0.24 | | 41 | 62 | 0.400 | 0.04 | 30.0 | 3.86 | 0.300 | 0.00 | 27.5 | 4.19 | 0.025 | -0.02 | 57.5 | 1.97 | 0.33 | | | Z=22 | | | | | | | | | | | | | | | 12 | 34 | | -0.06 | 2.5 | -0.03 | | -0.06 | 5.0 | 0.24 | | -0.10 | | 0.02 | 0.22 | | 36 | 58 | 0.425 | 0.00 | 30.0 | 4.68 | 0.375 | 0.04 | 37.5 | 4.91 | 0.125 | 0.02 | 60.0 | 2.77 | 0.24 | | 2 | Z=25 | ` , | | | | | | | | | | | | | | 15 | 40 | | -0.04 | | -0.12 | 0.250 | | 30.0 | 0.14 | 0.250 | 0.02 | 0.0 | -0.20 | 0.27 | | 39 | 64 | 0.275 | 0.00 | 0.0 | 3.26 | 0.200 | 0.00 | 15.0 | 3.49 | 0.000 | 0.00 | 0.0 | 2.70 | 0.23 | | | Z=27 | ` ' | | | | | | | | | | | | | | 38 | 65 | 0.300 | 0.02 | 0.0 | 2.90 | 0.225 | | -2.5 | 3.11 | 0.075 | | 47.5 | 1.52 | 0.21 | | 39 | 66 | 0.300 | 0.02 | 0.0 | 2.98 | 0.225 | 0.00 | 7.5 | 3.28 | 0.025 | 0.00 | 7.5 | 1.37 | 0.30 | | | Z = 28 | | | | | | | | | | | | | | | 18 | 46 | 0.350 | 0.12 | 0.0 | 1.20 | 0.325 | | -2.5 | 1.46 | 0.250 | | 60.0 | -0.82 | 0.26 | | 19 | 47 | 0.425 | 0.10 | 0.0 | 2.30 | 0.325 | | 20.0 | 2.53 | 0.050 | | 57.5 | -0.70 | 0.23 | | | | 0.425 | 0.10 | 0.0 | 2.30 | 0.325 | | 20.0 | 2.53 | 0.125 | | 60.0 | -0.65 | 0.23 | | | | 0.050 | 0.00 | | -0.70 | 0.125 | | 32.5 | -0.42 | 0.125 | | 60.0 | -0.65 | 0.23 | | 38 | 66 | 0.325 | 0.04 | 0.0 | 2.67 | 0.250 | | 0.0 | 2.94 | 0.000 | 0.00 | 0.0 | 0.73 | 0.27 | | 39 | 67 | 0.325 | 0.04 | 0.0 | 2.78 | 0.250 | | 0.0 | 3.08 | 0.000 | 0.00 | 0.0 | 0.51 | 0.30 | | 63 | 91 | | -0.04 | | 2.06 | 0.225 | | 40.0 | 2.30 | 0.300 | 0.00 | 0.0 | 1.03 | 0.24 | | 64 | 92 | | -0.02 | | 2.17 | 0.225 | | 37.5 | 2.39 | 0.300 | 0.02 | 0.0 | 1.14 | 0.22 | | 65 | 93 | 0.225 | | 60.0 | 2.15 | 0.250 | | 40.0 | 2.41 | 0.300 | 0.02 | 2.5 | 0.97 | 0.26 | | 66 | 94 | 0.225 | | 60.0 | 2.13 | 0.250 | | 40.0 | 2.39 | 0.300 | 0.04 | 0.0 | 1.01 | 0.26 | | 67 | 95 | 0.225 | 0.02 | 60.0 | 1.95 | 0.250 | 0.02 | 42.5 | 2.25 | 0.300 | 0.06 | 0.0 | 0.77 | 0.30 | | | Z=29 | ` ' | | | | | | | | | | | | | | 67 | 96 | 0.225 | 0.02 | 60.0 | 2.08 | 0.250 | 0.02 | 40.0 | 2.30 | 0.275 | 0.04 | 2.5 | 1.30 | 0.22 | | 2 | Z=30 | | | | | | | | | | | | | | | 74 | 104 | 0.100 | -0.02 | 2.5 | 0.42 | 0.125 | 0.00 | 17.5 | 0.71 | 0.200 | 0.02 | 25.0 | 0.39 | 0.29 | | 2 | Z=33 | (As) | | | | | | | | | | | | | | 33 | 66 | 0.250 | 0.02 | 50.0 | 2.44 | 0.200 | 0.04 | 35.0 | 2.79 | 0.200 | 0.06 | 0.0 | 2.13 | 0.34 | | 34 | 67 | 0.275 | 0.04 | 60.0 | 2.57 | 0.200 | 0.06 | 30.0 | 3.08 | 0.200 | 0.08 | 0.0 | 2.37 | 0.51 | | 35 | 68 | 0.175 | 0.06 | 5.0 | 3.10 | 0.200 | 0.06 | 30.0 | 3.48 | 0.300 | 0.04 | 60.0 | 2.93 | 0.39 | | 36 | 69 | 0.200 | 0.06 | 0.0 | 3.35 | 0.200 | 0.06 | 30.0 | 3.71 | 0.300 | 0.04 | 60.0 | 3.13 | 0.36 | | 58 | 91 | | -0.02 | | 2.80 | 0.200 | 0.02 | 35.0 | 3.01 | 0.200 | 0.04 | 0.0 | 2.15 | 0.22 | | 59 | 92 | | -0.02 | | 2.94 | 0.225 | 0.02 | 35.0 | 3.34 | 0.200 | 0.04 | 0.0 | 2.59 | 0.40 | | 60 | 93 | | -0.02 | | 3.15 | 0.225 | 0.00 | 37.5 | 3.58 | 0.300 | | 2.5 | 2.88 | 0.43 | | 61 | 94 | | -0.02 | | 3.36 | 0.250 | | 37.5 | 3.75 | | -0.04 | 7.5 | 2.84 | 0.39 | | 62 | 95 | | -0.02 | | 3.51 | 0.275 | 0.02 | 37.5 | 3.79 | | -0.02 | 10.0 | 3.01 | 0.28 | | 68 | 101 | 0.275 | | 60.0 | 2.72 | 0.300 | | 45.0 | 2.96 | 0.250 | 0.06 | 0.0 | 2.36 | 0.23 | | 69 | 102 | 0.300 | | 60.0 | 2.43 | 0.300 | | 45.0 | 2.65 | 0.250 | 0.06 | 0.0 | 2.01 | 0.22 | | 70 | 103 | 0.300 | | 60.0 | 2.35 | 0.300 | | 32.5 | 2.60 | 0.250 | 0.06 | 0.0 | 1.88 | 0.25 | | 71 | 104 | 0.300 | 0.06 | 50.0 | 2.13 | 0.300 | 0.04 | 32.5 | 2.38 | 0.250 | 0.08 | 0.0 | 1.52 | 0.25 | | | Z=34 | | | | | | | | | | | | | | | 33 | 67 | 0.275 | | 60.0 | 2.66 | 0.200 | 0.04 | 35.0 | 3.19 | 0.200 | 0.08 | | 2.35 | 0.53 | | 34 | 68 | 0.200 | 0.08 | 0.0 | 2.57 | 0.200 | | 30.0 | 3.49 | 0.275 | | 60.0 | 2.78 | 0.71 | | 35 | 69 | 0.175 | 0.08 | 0.0 | 3.31 | 0.200 | 0.04 | 35.0 | 3.97 | 0.300 | 0.04 | 60.0 | 3.04 | 0.66 | Table (continued) | Nucleus | Minimum | Saddle | | Minimum | S.H. | |---|---|------------------------------------|------------------|--|-------------------| | N A | $\epsilon_2 \qquad \epsilon_4 \qquad \gamma \qquad E$ | ϵ_2 ϵ_4 γ | E ϵ_2 | ϵ_4 γ | E $E_{\rm sad}$ | | | (MeV | 7) | (MeV) | | (MeV) (MeV) | | Z = 34 | | | | | | | 36 - 70 | 0.200 0.08 0.0 3.8 | | | | | | 37 71 | 0.250 0.08 0.0 4.0 | | | | | | 38 72 | 0.300 0.04 0.0 4. | | | | | | 39 73 | 0.300 0.06 0.0 4.5 | | | | | | 58 92 | $0.250 \ -0.02 \ 60.0 \ 3.0$ | | | | | | 59 93 | $0.275 -0.04 \ 0.0 \ 3.0$ | | | | | | | $0.275 -0.04 \ 0.0 \ 3.0$ | | | | | | | 0.250 -0.02 60.0 3. | | | | | | 60 94 | $0.275 -0.02 60.0 \qquad 3.3$ | | | 0 - 0.04 0.0 | | | 61 95 | 0.275 0.00 60.0 3.5 | | | 0 -0.02 0.0 | | | 62 96 | 0.275 0.00 60.0 3.0 | | | 0 -0.02 2.5 | | | 63 97 | 0.275 0.00 60.0 3. | | | | | | 64 98 | 0.275 0.02 60.0 3. | | | | | | 65 99 | 0.275 0.04 60.0 3.0 | | | | | | 66 100 | 0.275 0.04 60.0 3.4 | | | | | | 68 102 | 0.300 0.06 60.0 2.9 | | | | | | 69 103 | 0.300 0.08 60.0 2.5 | | | | | | 70 104 | 0.300 0.06 60.0 2.4 | | | | | | 71 105 | 0.300 0.06 60.0 2.5 | 0.250 0.04 32.5 | 2.70 0.25 | 0.08 0.0 | 1.54 0.43 | | Z=35 | | 7 0.00F 0.00 0F 0 | 0.00 0.00 | 0 004 600 | 0.05 0.45 | | 33 68 | 0.200 0.08 0.0 3. | | | | | | 34 69 | 0.200 0.08 0.0 3.4 | | | | | | 35 70 | 0.250 0.06 0.0 3.8 | | | | | | | 0.250 0.06 0.0 3.8 | | | | | | 26 71 | 0.375 -0.02 20.0 4.1 | | | | | | 36 71 | 0.375 -0.02 20.0 4.0 | | | | | | | $0.375 -0.02 \ 20.0 \ 4.0$ | | | | | | 37 72 | 0.250 0.08 0.0 4.0
0.275 0.06 0.0 4.1 | | | | | | $ \begin{array}{ccc} 37 & 72 \\ 38 & 73 \end{array} $ | | | | | | | 39 74 | 0.325 0.02 2.5 3.8
0.275 0.04 60.0 4.1 | | | | | | 40 75 | 0.275 0.04 00.0 $4.$ 0.300 0.06 0.0 $4.$ | | | | | | 57 92 | 0.250 0.00 0.0 4. | | | | | | 58 93 | $0.250 -0.02 \ 00.0$ 3.3 $0.250 -0.02 \ 60.0$ 3.3 | | | | | | 59 94 | $0.275 -0.02 \ 60.0$ 3.3 | | | 0.04 0.0 $0.02 0.0$ | | | 60 95 | $0.300 -0.02 \ 60.0$ 3.4 | | | 0 -0.02 0.0
0 -0.02 0.0 | | | 61 96 | 0.300 0.00 60.0 3. | | | 0.02 0.00
0.00 | | | 62 97 | 0.300 0.00 60.0 3.8 | | | 0.02 0.00 | | | 63 98 | 0.300 0.02 60.0 3.9 | | | | | | 64 99 | 0.300 0.02 60.0 4.0 | | | | | | 65 100 | 0.300 0.04 60.0 3.8 | | | | | | 66 101 | 0.300 0.04 60.0 3.5 | | | | | | 67 102 | 0.300 0.06 60.0 3.4 | | | | | | 68 103 | 0.300 0.06 60.0 3. | | | | | | 69 104 | 0.300 0.06 60.0 2. | | | | | | 70 105 | 0.300 0.06 60.0 2.0 | | | | | | 71 106 | 0.300 0.06 60.0 2.4 | | | | | | 72 107 | 0.300 0.04 57.5 2.4 | | | | | | Z=36 | | | | | | | 33 69 | 0.200 0.06 0.0 3.3 | 5 0.225 0.06 32.5 | 3.79 0.32 | 5 0.04 60.0 | 3.05 0.44 | | | | | | | uos on novt pago | Table (continued) | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $ | Nu | cleus | Mi | nimum | | | Sa | ddle | | | Mini | mum | | S.H. | |--|----|-------|---------------------------|----------|-------|--------------|--------------|----------|-------|--------------|--------------|----------|-------|-------| | Text | N | A | ϵ_2 ϵ_4 | γ | | ϵ_2 | ϵ_4 | γ | | ϵ_2 | ϵ_4 | γ | | | | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $ | | | | | (MeV) | | | | (MeV) | | | | (MeV) | (MeV) | | 1.00 | | | ` ' | | | | | | | | | | | | | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | 34 | 70 | | | | | | | | | | | | | | 15 | | | | | | | | | | | | | | | | 88 72 0.375 0.00 1.75 3.99 0.200 0.06 0.05 0.04 60.0 3.21 0.87 38 74 0.350 0.04 60.0 3.93 0.400 0.00 3.55 0.02 0.0 0.36 0.76 40 76 0.300 0.04 60.0 4.20 0.300 0.477 0.350 0.04 0.0 3.36 0.76 41 77 0.225 0.04 60.0 4.20 0.300 0.04 4.77 0.355 0.04 0.0 3.64 0.75 41 77 0.225 0.04 60.0 4.90 0.300 0.04 3.75 4.59 0.325 0.04 0.0 3.60 0.00 3.50 4.42 0.300 0.0 3.87 0.50 59 95 0.275 -0.02 60.0 3.56 0.250 0.00 3.50 4.42 0.300 -0.02 2.80 8.83 0 | | | | | | | | | | | | | | | | 187 73 | | | | | | | | | | | | | | | | 188 74 | | | | | | | | | | | | | | | | 198 75 | | | | | | | | | | | | | | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | | | | | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | | | | | | | 57 93 0.256 -0.02 57.5 3.32 0.200 0.00 3.50 4.13 0.275 0.00 0.0 3.19 0.58 59 95 0.275 -0.02 60.0 3.56 0.250 0.00 35.0 4.42 0.300 -0.02 0.0 2.88 0.85 60 96 0.300 -0.02 60.0 3.60 0.275 0.03 4.64 0.300 -0.02 0.0 2.88 1.04 61 97 0.300 0.00 60.0 3.88 0.250 0.02 4.78 0.300 -0.02 0.0 2.74 0.91 62 98 0.300 0.02 60.0 4.13 0.300 0.02 3.75 4.83 0.325 0.00 0.2 2.82 0.63 64 100 0.300 0.02 6.0 1.81 0.300 0.02 3.75 4.50 0.325 0.02 1.02 2.82 0.63 | | | | | | | | | | | | | | | | 58 94 0.275 -0.02 60.0 3.56 0.225 0.02 3.50 4.13 0.275 0.00 0.0 3.19 0.58 59 95 0.275 -0.02 60.0 3.66 0.250 0.00 3.75 4.64 0.300 -0.02 0.2 2.88 1.04 61 97 0.300 0.00 60.0 3.88 0.255 0.02 3.75 4.68 0.300 -0.02 0.0 2.74 0.91 62 98 0.300 0.00 60.0 4.13 0.300 0.02 3.00 0.2 2.76 0.02 3.00 0.00 2.26 0.85 6.85 64 100 0.300 0.02 60.0 4.18 0.300 0.02 3.75 4.69 0.325 0.02 10.0 2.86 0.51 65 101 0.300 0.06 60.0 3.59 0.325 0.02 3.75 4.05 0.325 < | | | | | | | | | | | | | | | | 59 95 0.275 -0.02 60.0 3.56 0.250 0.00 35.0 4.42 0.300 -0.02 0.0 2.88 0.85 60 96 0.300 -0.00 60.0 3.88 0.250 0.02 35.0 4.78 0.300 -0.0 2.0 2.74 0.91 61 97 0.300 0.00 60.0 3.98 0.250 0.02 35.0 4.83 0.325 0.00 0.0 2.86 0.85 63 99 0.300 0.02 60.0 4.13 0.300 0.02 3.75 4.69 0.325 0.02 10.0 2.96 0.51 64 100 0.300 0.04 57.5 4.08 0.300 0.02 3.75 4.60 0.325 0.02 10.2 2.96 0.51 66 101 0.300 0.06 60.0 3.35 0.325 0.02 3.5 0.305 0.02 2.0 0.25 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<> | | | | | | | | | | | | | | | | 60 96 0.300 -0.02 6.0.0 3.68 0.275 0.00 3.75 4.64 0.300 -0.00 2.86 0.104 61 97 0.300 0.00 60.0 3.98 0.275 0.02 3.75 4.83 0.325 0.00 0.0 2.86 0.85 63 99 0.300 0.02 60.0 4.18 0.300 0.02 3.75 4.69 0.325 0.00 7.5 2.82 0.63 64 100 0.300 0.04 57.5 4.08 0.300 0.02 3.75 0.02 0.325 0.02 12.5 2.79 0.42 66 102 0.300 0.04 57.5 3.90 0.325 0.02 37.5 4.50 0.325 0.02 12.5 2.79 0.42 66 102 0.300 0.06 60.0 3.33 0.325 0.02 37.5 4.05 0.300 0.06 0.0 2.41 | | | | | | | | | | | | | | | | 61 97 0.300 0.00 60.0 3.88 0.250 0.02 35.0 4.78 0.300 -0.02 0.0 2.74 0.91 62 98 0.300 0.00 60.0 3.98 0.275 0.02 37.5 4.83 0.325 0.00 0.0 2.86 0.85 63 99 0.300 0.02 60.0 4.13 0.300 0.02 37.5 4.69 0.325 0.00 7.5 2.82 0.63 64 100 0.300 0.02 60.0 4.18 0.300 0.02 37.5 4.69 0.325 0.02 10.0 2.96 0.51 65 101 0.300 0.04 57.5 4.08 0.300 0.02 37.5 4.50 0.325 0.02 10.0 2.96 0.51 66 102 0.300 0.04 57.5 3.90 0.325 0.02 37.5 4.50 0.325 0.00 12.5 2.79 0.42 66 102 0.300 0.04 57.5 3.90 0.325 0.02 37.5 4.50 0.325 0.00 12.5 2.79 0.42 68 104 0.300 0.06 60.0 3.59 0.325 0.02 37.5 4.05 0.300 0.06 0.0 2.84 0.43 68 104 0.300 0.06 60.0 3.33 0.325 0.02 40.0 3.85 0.300 0.06 0.0 2.41 0.52 69 105 0.300 0.06 60.0 2.96 0.325 0.02 40.0 3.85 0.300 0.06 0.0 2.41 0.52 69 105 0.300 0.06 60.0 2.96 0.325 0.04 32.5 3.61 0.275 0.08 0.0 2.08 0.65 70 106 0.300 0.06 60.0 2.86 0.300 0.04 32.5 3.61 0.275 0.08 0.0 2.04 0.78 71 107 0.300 0.06 60.0 2.62 0.250 0.06 32.5 3.15 0.250 0.08 0.0 2.04 0.53 73 109 0.300 0.06 60.0 2.62 0.250 0.04 32.5 3.44 0.275 0.08 0.0 1.85 0.80 72 108 0.300 0.06 60.0 2.62 0.250 0.06 32.5 3.15 0.250 0.08 0.0 2.14 0.26 **Z = 37 (Rb)** 29 66 0.300
0.02 0.0 2.30 0.225 0.02 0.0 2.52 0.125 0.02 5.0 1.81 0.22 33 70 0.250 0.06 0.0 3.67 0.225 0.06 30.0 4.45 0.275 0.04 55.0 3.50 0.37 34 71 0.275 0.06 0.0 3.81 0.225 0.06 30.0 4.45 0.350 0.04 60.0 3.41 0.64 35 72 0.300 0.04 0.0 3.50 0.400 0.00 4.0 5.01 0.325 0.04 0.0 3.25 1.12 38 75 0.375 0.06 60.0 3.81 0.225 0.06 30.0 4.45 0.350 0.04 0.0 3.47 0.83 36 73 0.325 0.04 0.0 3.53 0.375 0.00 37.5 4.72 0.375 0.06 60.0 3.47 0.83 37 74 0.400 0.06 60.0 4.71 0.375 0.04 0.0 4.88 0.350 0.04 0.0 2.81 0.36 40 77 0.200 0.06 60.0 4.71 0.375 0.02 4.8 0.4 0.0 3.25 0.04 0.0 2.81 0.36 40 77 0.200 0.06 60.0 4.71 0.375 0.02 4.8 0.4 0.0 0.350 0.04 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 | | | | | | | | | | | | | | | | 62 98 0.300 0.00 60.0 4.13 0.300 0.02 37.5 4.76 0.325 0.00 7.5 2.82 0.63 64 100 0.300 0.02 60.0 4.18 0.300 0.02 37.5 4.69 0.325 0.02 10.0 2.96 0.51 65 101 0.300 0.04 57.5 4.08 0.300 0.02 37.5 4.50 0.325 0.02 12.5 2.79 0.42 66 102 0.300 0.04 57.5 3.90 0.325 0.02 37.5 4.05 0.300 0.06 0.0 2.84 0.43 68 104 0.300 0.06 60.0 3.59 0.325 0.02 3.15 4.05 0.300 0.06 0.0 2.84 0.43 69 105 0.300 0.06 60.0 2.86 0.325 0.04 3.25 3.63 0.275 0.08 0.0 < | | | | | | | | | | | | | | | | 63 99 0.300 0.02 60.0 4.13 0.300 0.02 37.5 4.76 0.325 0.02 1.00 2.96 0.51 64 100 0.300 0.02 60.0 4.18 0.300 0.02 37.5 4.69 0.325 0.02 1.0 2.96 0.51 65 101 0.300 0.04 57.5 4.08 0.300 0.02 37.5 4.33 0.300 0.04 0.0 2.84 0.43 67 103 0.300 0.06 60.0 3.59 0.325 0.02 37.5 4.05 0.300 0.06 0.0 2.96 0.325 0.04 3.85 0.300 0.06 0.0 2.96 0.325 0.04 32.5 3.61 0.275 0.08 0.0 2.04 0.78 70 106 0.300 0.06 60.0 2.86 0.300 0.04 3.25 0.04 32.5 0.08 0.0 2.04 | | | | | | | | | | | | | | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | | | | | | | 65 101 0.300 0.04 57.5 4.08 0.300 0.02 37.5 4.50 0.325 0.02 12.5 2.79 0.42 66 102 0.300 0.04 57.5 3.90 0.325 0.02 37.5 4.35 0.300 0.06 0.0 2.53 0.44 68 104 0.300 0.06 60.0 2.35 0.02 40.0 3.85 0.300 0.06 0.0 2.61 0.52 69 105 0.300 0.06 60.0 2.96 0.325 0.04 32.5 3.61 0.275 0.08 0.0 2.08 0.65 70 106 0.300 0.06 60.0 2.62 0.250 0.04 3.25 3.61 0.275 0.08 0.0 2.04 0.78 71 107 0.300 0.06 2.62 0.250 0.06 3.25 3.15 0.225 0.08 0.0 2.14 0.25 | | | | | | | | | | | | | | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | | | | | | | 67 103 0.300 0.06 60.0 3.59 0.325 0.02 37.5 4.05 0.300 0.06 0.0 2.53 0.46 68 104 0.300 0.06 60.0 3.33 0.325 0.02 40.0 3.85 0.300 0.06 0.0 2.41 0.52 70 106 0.300 0.06 60.0 2.86 0.300 0.04 32.5 3.61 0.275 0.08 0.0 2.04 0.78 71 107 0.300 0.06 60.0 2.63 0.250 0.04 32.5 3.44 0.275 0.08 0.0 2.04 0.53 72 108 0.300 0.06 60.0 2.62 0.250 0.06 32.5 3.15 0.250 0.08 0.0 2.04 0.53 73 109 0.300 0.02 0.0 2.30 0.225 0.00 2.52 0.125 0.02 5.0 1.81 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<> | | | | | | | | | | | | | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | | | | | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | | | | | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | | | | | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | | | | | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | | | | | | | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | 29 66 0.300 0.02 0.0 2.30 0.225 0.02 0.0 2.52 0.125 0.02 55.0 1.81 0.22 33 70 0.250 0.06 0.0 3.67 0.225 0.06 30.0 4.05 0.275 0.04 55.0 3.50 0.37 34 71 0.275 0.06 0.0 3.81 0.225 0.06 30.0 4.45 0.350 0.04 60.0 3.41 0.64 35 72 0.300 0.04 0.0 3.53 0.375 0.06 60.0 3.47 0.83 36 73 0.325 0.04 0.0 3.53 0.375 0.0 3.75 0.06 60.0 3.47 1.31 37 74 0.400 0.06 60.0 3.90 0.400 0.00 4.0 0.325 0.04 0.0 3.25 1.12 38 75 0.375 0.06 60.0 | | | | 71 00.0 | 2.11 | 0.220 | 0.01 | 00.0 | 2.00 | 0.200 | 0.00 | 0.0 | 2.11 | 0.20 | | 33 70 0.250 0.06 0.0 3.67 0.225 0.06 3.00 4.05 0.275 0.04 55.0 3.50 0.37 34 71 0.275 0.06 0.0 3.81 0.225 0.06 3.00 4.45 0.350 0.04 60.0 3.41 0.64 35 72 0.300 0.04 0.0 3.90 0.400 0.00 37.5 4.72 0.375 0.06 60.0 3.47 0.83 36 73 0.325 0.04 0.0 3.53 0.375 0.00 37.5 4.84 0.375 0.06 60.0 3.47 1.31 37 74 0.400 0.06 60.0 3.90 0.400 0.00 4.00 5.01 0.325 0.04 0.0 3.25 1.12 38 75 0.375 0.06 60.0 4.71 0.375 0.02 42.5 5.07 0.350 0.04 0.0 2.81 | | | ` ' | 0.0 | 2.30 | 0.225 | 0.02 | 0.0 | 2 52 | 0.125 | 0.02 | 55.0 | 1.81 | 0.22 | | 34 71 0.275 0.06 0.0 3.81 0.225 0.06 30.0 4.45 0.350 0.04 60.0 3.41 0.64 35 72 0.300 0.04 0.0 3.90 0.400 0.00 37.5 4.72 0.375 0.06 60.0 3.47 0.83 36 73 0.325 0.04 0.0 3.53 0.375 0.00 37.5 0.06 60.0 3.47 1.31 37 74 0.400 0.06 60.0 3.90 0.400 0.00 4.98 0.350 0.04 0.0 3.25 1.12 38 75 0.375 0.06 60.0 4.16 0.400 0.00 4.98 0.350 0.04 0.0 2.83 0.82 39 76 0.200 0.04 60.0 4.71 0.375 0.02 42.5 5.07 0.350 0.04 0.0 2.81 0.36 40 77 | | | | | | | | | | | | | | | | 35 72 0.300 0.04 0.0 3.90 0.400 0.00 37.5 4.72 0.375 0.06 60.0 3.47 0.83 36 73 0.325 0.04 0.0 3.53 0.375 0.00 37.5 4.84 0.375 0.06 60.0 3.47 1.31 37 74 0.400 0.06 60.0 3.90 0.400 0.00 40.0 5.01 0.325 0.04 0.0 3.25 1.12 38 75 0.375 0.06 60.0 4.16 0.400 0.00 4.98 0.350 0.04 0.0 2.83 0.82 39 76 0.200 0.04 60.0 4.71 0.375 0.02 42.5 5.07 0.350 0.04 0.0 2.81 0.36 40 77 0.200 0.06 60.0 4.26 0.300 0.06 35.0 4.68 0.325 0.04 0.0 3.64 0.37 | | | | | | | | | | | | | | | | 36 73 0.325 0.04 0.0 3.53 0.375 0.00 37.5 4.84 0.375 0.06 60.0 3.47 1.31 37 74 0.400 0.06 60.0 3.90 0.400 0.00 4.00 5.01 0.325 0.04 0.0 3.25 1.12 38 75 0.375 0.06 60.0 4.16 0.400 0.00 4.98 0.350 0.04 0.0 2.83 0.82 39 76 0.200 0.04 60.0 4.71 0.375 0.02 42.5 5.07 0.350 0.04 0.0 2.81 0.36 40 77 0.200 0.06 60.0 4.26 0.300 0.06 35.0 4.84 0.350 0.06 0.0 2.99 0.47 41 78 0.225 0.06 60.0 3.86 0.300 0.04 32.5 4.04 0.0 3.34 0.42 42 | | | | | | | | | | | | | | | | 37 74 0.400 0.06 60.0 3.90 0.400 0.00 40.0 5.01 0.325 0.04 0.0 3.25 1.12 38 75 0.375 0.06 60.0 4.16 0.400 0.00 40.0 4.98 0.350 0.04 0.0 2.83 0.82 39 76 0.200 0.04 60.0 4.71 0.375 0.02 42.5 5.07 0.350 0.04 0.0 2.81 0.36 40 77 0.200 0.06 60.0 4.37 0.325 0.04 3.50 4.84 0.350 0.06 0.0 2.99 0.47 41 78 0.225 0.06 60.0 4.26 0.300 0.06 3.25 0.04 0.0 3.34 0.42 42 79 0.225 0.06 60.0 3.86 0.300 0.04 32.5 4.23 0.325 0.04 0.0 3.64 0.37 <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr<> | | | | | | | | | | | | | | | | 38 75 0.375 0.06 60.0 4.16 0.400 0.00 4.98 0.350 0.04 0.0 2.83 0.82 39 76 0.200 0.04 60.0 4.71 0.375 0.02 42.5 5.07 0.350 0.04 0.0 2.81 0.36 40 77 0.200 0.06 60.0 4.37 0.325 0.04 35.0 4.84 0.350 0.06 0.0 2.99 0.47 41 78 0.225 0.06 60.0 4.26 0.300 0.06 35.0 4.68 0.325 0.04 0.0 3.34 0.42 42 79 0.225 0.06 60.0 3.86 0.300 0.04 32.5 4.23 0.325 0.04 0.0 3.64 0.37 43 80 0.300 0.04 17.5 3.71 0.300 0.04 30.0 3.99 0.250 0.06 55.0 3.72 0.2 | | | | | | | | | | | | | | | | 39 76 0.200 0.04 60.0 4.71 0.375 0.02 42.5 5.07 0.350 0.04 0.0 2.81 0.36 40 77 0.200 0.06 60.0 4.37 0.325 0.04 35.0 4.84 0.350 0.06 0.0 2.99 0.47 41 78 0.225 0.06 60.0 4.26 0.300 0.06 35.0 4.68 0.325 0.04 0.0 3.34 0.42 42 79 0.225 0.06 60.0 3.86 0.300 0.04 32.5 4.23 0.325 0.04 0.0 3.64 0.37 43 80 0.300 0.04 17.5 3.71 0.300 0.04 30.0 3.99 0.250 0.06 55.0 3.72 0.28 57 94 0.225 -0.02 57.5 3.72 0.200 0.00 37.5 3.93 0.250 0.02 0.0 3. | | | | | | | | | | | | | | | | 40 77 0.200 0.06 60.0 4.37 0.325 0.04 35.0 4.84 0.350 0.06 0.0 2.99 0.47 41 78 0.225 0.06 60.0 4.26 0.300 0.06 35.0 4.68 0.325 0.04 0.0 3.34 0.42 42 79 0.225 0.06 60.0 3.86 0.300 0.04 32.5 4.23 0.325 0.04 0.0 3.64 0.37 43 80 0.300 0.04 17.5 3.71 0.300 0.04 30.99 0.250 0.06 55.0 3.72 0.28 57 94 0.225 -0.02 57.5 3.72 0.200 0.00 37.5 3.93 0.250 0.02 0.0 3.06 0.21 58 95 0.250 -0.02 60.0 3.98 0.250 0.00 35.0 4.36 0.275 0.00 0.0 3.03 | | | | | | | | | | | | | | | | 41 78 0.225 0.06 60.0 4.26 0.300 0.06 35.0 4.68 0.325 0.04 0.0 3.34 0.42 42 79 0.225 0.06 60.0 3.86 0.300 0.04 32.5 4.23 0.325 0.04 0.0 3.64 0.37 43 80 0.300 0.04 17.5 3.71 0.300 0.04 30.99 0.250 0.06 55.0 3.72 0.28 57 94 0.225 -0.02 57.5 3.72 0.200 0.00 37.5 3.93 0.250 0.02 0.0 3.06 0.21 58 95 0.250 -0.02 60.0 3.98 0.250 0.00 35.0 4.36 0.275 0.00 0.0 3.03 0.38 59 96 0.275 -0.02 60.0 4.11 0.250 0.00 37.5 4.61 0.300 -0.02 0.0 2.71 0.49 60 97 0.300 -0.02 60.0 4.12 0.275 <td></td> | | | | | | | | | | | | | | | | 42 79 0.225 0.06 60.0 3.86 0.300 0.04 32.5 4.23 0.325 0.04 0.0 3.64 0.37 43 80 0.300 0.04 17.5 3.71 0.300 0.04 30.0 3.99 0.250 0.06 55.0 3.72 0.28 57 94 0.225 -0.02 57.5 3.72 0.200 0.00 37.5 3.93 0.250 0.02 0.0 3.06 0.21 58 95 0.250 -0.02 60.0 3.98 0.250 0.00 35.0 4.36 0.275 0.00 0.0 3.03 0.38 59 96 0.275 -0.02 60.0 4.11 0.250 0.00 37.5 4.61 0.300 -0.02 0.0 2.71 0.49 60 97 0.300 -0.02 60.0 4.10 0.275 0.00 40.0 4.83 0.300 -0.02 0.0 2.61 0.74 61 98 0.325 0.00 60.0 4.28 | | | | | | | | | | | | | | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | | | | | | | 57 94 0.225 -0.02 57.5 3.72 0.200 0.00 37.5 3.93 0.250 0.02 0.0 3.06 0.21 58 95 0.250 -0.02 60.0 3.98 0.250 0.00 35.0 4.36 0.275 0.00 0.0 3.03 0.38 59 96 0.275 -0.02 60.0 4.11 0.250 0.00 37.5 4.61 0.300 -0.02 0.0 2.71 0.49 60 97 0.300 -0.02 60.0 4.10 0.275 0.00 40.0 4.83 0.300 -0.02 0.0 2.61 0.74 61 98 0.325 0.00 60.0 4.28 0.275 0.00 40.0 5.00 0.325 0.00 0.0 2.48 0.72 62 99 0.325 0.00 60.0 4.44 0.275 0.02 42.5 5.01 0.325 0.00 0.0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<> | | | | | | | | | | | | | | | | 58 95 0.250 -0.02 60.0 3.98 0.250 0.00 35.0 4.36 0.275 0.00 0.0 3.03 0.38 59 96 0.275 -0.02 60.0 4.11 0.250 0.00 37.5 4.61 0.300 -0.02 0.0 2.71 0.49 60 97 0.300 -0.02 60.0 4.10 0.275 0.00 40.0 4.83 0.300 -0.02 0.0 2.61 0.74 61 98 0.325 0.00 60.0 4.28 0.275 0.00 40.0 5.00 0.325 0.00 0.0 2.48 0.72 62 99 0.325 0.00 60.0 4.44 0.275 0.02 42.5 5.01 0.325 0.00 0.0 2.60 0.57 63 100 0.300 0.02 60.0 4.63 0.300 0.02 37.5 4.99 0.325 0.02 0.0 2.55 0.37
64 101 0.300 0.02 60.0 4.68 | | | | | | | | | | | | | | | | 59 96 0.275 -0.02 60.0 4.11 0.250 0.00 37.5 4.61 0.300 -0.02 0.0 2.71 0.49 60 97 0.300 -0.02 60.0 4.10 0.275 0.00 40.0 4.83 0.300 -0.02 0.0 2.61 0.74 61 98 0.325 0.00 60.0 4.28 0.275 0.00 40.0 5.00 0.325 0.00 0.0 2.48 0.72 62 99 0.325 0.00 60.0 4.44 0.275 0.02 42.5 5.01 0.325 0.00 0.0 2.60 0.57 63 100 0.300 0.02 60.0 4.63 0.300 0.02 37.5 4.99 0.325 0.02 0.0 2.55 0.37 64 101 0.300 0.02 60.0 4.68 0.300 0.02 37.5 4.92 0.325 0.02 0.0 2.69 0.25 65 102 0.300 0.04 60.0 4.56 | | | | | | | | | | | | | | | | 60 97 0.300 -0.02 60.0 4.10 0.275 0.00 40.0 4.83 0.300 -0.02 0.0 2.61 0.74 61 98 0.325 0.00 60.0 4.28 0.275 0.00 40.0 5.00 0.325 0.00 0.0 2.48 0.72 62 99 0.325 0.00 60.0 4.44 0.275 0.02 42.5 5.01 0.325 0.00 0.0 2.60 0.57 63 100 0.300 0.02 60.0 4.63 0.300 0.02 37.5 4.99 0.325 0.02 0.0 2.55 0.37 64 101 0.300 0.02 60.0 4.68 0.300 0.02 37.5 4.92 0.325 0.02 0.0 2.69 0.25 65 102 0.300 0.04 60.0 4.56 0.300 0.02 4.00 4.77 0.300 0.02 0.0 2.60 0.21 | | | | | | | | | | | | | | | | 61 98 0.325 0.00 60.0 4.28 0.275 0.00 40.0 5.00 0.325 0.00 0.0 2.48 0.72 62 99 0.325 0.00 60.0 4.44 0.275 0.02 42.5 5.01 0.325 0.00 0.0 2.60 0.57 63 100 0.300 0.02 60.0 4.63 0.300 0.02 37.5 4.99 0.325 0.02 0.0 2.55 0.37 64 101 0.300 0.02 60.0 4.68 0.300 0.02 37.5 4.92 0.325 0.02 0.0 2.69 0.25 65 102 0.300 0.04 60.0 4.56 0.300 0.02 4.00 4.77 0.300 0.02 0.0 2.60 0.21 | | | | | | | | | | | | | | | | 62 99 0.325 0.00 60.0 4.44 0.275 0.02 42.5 5.01 0.325 0.00 0.0 2.60 0.57 63 100 0.300 0.02 60.0 4.63 0.300 0.02 37.5 4.99 0.325 0.02 0.0 2.55 0.37 64 101 0.300 0.02 60.0 4.68 0.300 0.02 37.5 4.92 0.325 0.02 0.0 2.69 0.25 65 102 0.300 0.04 60.0 4.56 0.300 0.02 4.00 4.77 0.300 0.02 0.0 2.60 0.21 | | | | | | | | | | | | | | | | 63 100 0.300 0.02 60.0 4.63 0.300 0.02 37.5 4.99 0.325 0.02 0.0 2.55 0.37 64 101 0.300 0.02 60.0 4.68 0.300 0.02 37.5 4.92 0.325 0.02 0.0 2.69 0.25 65 102 0.300 0.04 60.0 4.56 0.300 0.02 40.0 4.77 0.300 0.02 0.0 2.60 0.21 | | | | | | | | | | | | | | | | 64 101 0.300 0.02 60.0 4.68 0.300 0.02 37.5 4.92 0.325 0.02 0.0 2.69 0.25 65 102 0.300 0.04 60.0 4.56 0.300 0.02 40.0 4.77 0.300 0.02 0.0 2.60 0.21 | | | | | | | | | | | | | | | | $65 102 \qquad 0.300 0.04 60.0 4.56 \qquad 0.300 0.02 40.0 4.77 \qquad 0.300 0.02 0.0 2.60 \qquad 0.21$ | 64 | 101 | 0.300 0.0 | 02 60.0 | | | | | | | | 0.0 | | | | 67 104 0.300 0.06 60.0 4.08 0.325 0.02 37.5 4.29 0.300 0.04 0.0 2.32 0.21 | 65 | 102 | 0.300 0.0 | 04 60.0 | | | | | | 0.300 | | 0.0 | | | | | 67 | 104 | 0.300 0.0 | 60.0 | 4.08 | 0.325 | 0.02 | 37.5 | 4.29 | 0.300 | 0.04 | 0.0 | 2.32 | 0.21 | Table (continued) | Nu | cleus | | Mini | mum | | | Sad | ldle | | | Mini | mum | | S.H. | |-----------------|-----------------|------------------|--------------|--------------|---------------------|------------------|--------------|----------------|---------------------|------------------|----------------|--------------|---------------------|----------------| | N | A | ϵ_2 | ϵ_4 | γ | E | ϵ_2 | ϵ_4 | γ | E | ϵ_2 | ϵ_4 | γ | E | $E_{\rm sad}$ | | | | | | | (MeV) | | | | (MeV) | | | | (MeV) | (MeV) | | | | 7 (Rb) | | | | | | | | | | | | | | 68 | 105 | 0.275 | | 60.0 | 3.78 | 0.325 | | 37.5 | 4.07 | 0.300 | 0.06 | 0.0 | 2.21 | 0.29 | | 69 | 106 | 0.300 | | 60.0 | 3.43 | 0.325 | | 32.5 | 3.81 | 0.300 | 0.08 | 0.0 | 1.88 | 0.38 | | 70 | 107 | 0.300 | | 60.0 | 3.31 | 0.300 | | 32.5 | 3.84 | 0.300 | 0.08 | 0.0 | 1.93 | 0.53 | | 71 | 108 | 0.300 | | 60.0 | 3.08 | 0.275 | | 32.5 | 3.62 | 0.275 | 0.08 | 0.0 | 1.86 | 0.54 | | 72 | 109 | 0.300 | 0.06 | 52.5 | 3.06 | 0.250 | 0.06 | 32.5 | 3.38 | 0.275 | 0.08 | 0.0 | 2.12 | 0.33 | | | Z = 38 | | 0.04 | F7 F | 2 50 | 0.995 | 0.06 | 20.0 | 2.05 | 0.200 | 0.04 | 0.0 | 2.64 | 0.21 | | 33 | 71
72 | 0.300 | | 57.5 | $\frac{3.52}{2.50}$ | 0.225 | | 30.0 | 3.95 | 0.300 | 0.04 | 0.0 | 3.64 | 0.31 | | 34 | 72
72 | 0.325 | | 60.0 | $\frac{3.58}{2.71}$ | 0.250 | | 30.0 | 4.36 | 0.300 | 0.06 | 0.0 | $\frac{3.66}{2.51}$ | 0.70 | | $\frac{35}{36}$ | $\frac{73}{74}$ | $0.350 \\ 0.375$ | | 60.0
60.0 | $3.71 \\ 3.77$ | $0.350 \\ 0.375$ | | $37.5 \\ 40.0$ | 4.77 | $0.325 \\ 0.350$ | $0.02 \\ 0.04$ | $0.0 \\ 0.0$ | $\frac{3.51}{3.06}$ | $1.06 \\ 1.06$ | | 30
37 | $\frac{74}{75}$ | 0.375 0.400 | | 60.0 | $\frac{3.77}{4.22}$ | 0.373 | | 40.0 | $4.83 \\ 5.01$ | 0.350 | 0.04 0.04 | 0.0 | $\frac{3.00}{2.73}$ | 0.79 | | 38 | 76 | 0.400 0.375 | | 60.0 | $\frac{4.22}{4.49}$ | 0.400 0.425 | | 35.0 | $\frac{3.01}{4.97}$ | 0.350 | 0.04 | 0.0 | $\frac{2.73}{2.28}$ | 0.48 | | 39 | 70
77 | 0.375 0.175 | | 60.0 | $\frac{4.49}{4.57}$ | 0.425 0.275 | | 35.0 | 5.10 | 0.375 | 0.04 0.06 | 0.0 | $\frac{2.28}{2.14}$ | 0.48 0.53 | | 40 | 78 | 0.173 | | 60.0 | 4.37 4.25 | 0.273 | | 35.0 | 4.78 | 0.375 | 0.06 | 0.0 | $\frac{2.14}{2.30}$ | 0.53 | | 41 | 79 | 0.200 | | 60.0 | $\frac{4.25}{4.14}$ | 0.300 | | 35.0 | 4.76 4.56 | 0.375 | 0.06 | 0.0 | $\frac{2.30}{2.79}$ | 0.33 0.43 | | 42 | 80 | 0.200 | | 60.0 | 3.75 | 0.300 | | 32.5 | 4.13 | 0.375 | 0.06 | 0.0 | $\frac{2.19}{3.19}$ | 0.43 | | 43 | 81 | 0.200 0.225 | | 50.0 | 3.75 3.61 | 0.300 | | 30.0 | 3.86 | 0.375 | 0.04 | | 3.19 3.56 | 0.35 0.25 | | 58 | 96 | 0.250 | -0.02 | | 4.06 | 0.250 | | 37.5 | 4.29 | 0.323 | 0.04 | 0.0 | 2.86 | 0.23 | | 59 | 97 | | -0.02 | | 4.17 | 0.250 | | 42.5 | 4.57 | 0.300 | 0.00 | 0.0 | 2.58 | 0.40 | | 60 | 98 | | -0.02 | | 4.24 | 0.275 | | 40.0 | 4.84 | 0.325 | 0.00 | 0.0 | 2.34 | 0.59 | | 61 | 99 | 0.325 | | 60.0 | 4.47 | 0.275 | | 40.0 | 4.98 | 0.325 | 0.00 | 0.0 | 2.23 | 0.53 | | 62 | 100 | 0.320 | | 60.0 | 4.60 | 0.275 | | 42.5 | 5.03 | 0.325 | 0.00 | 0.0 | 2.33 | 0.42 | | 63 | 101 | 0.300 | | 60.0 | 4.74 | 0.275 | | 42.5 | 5.00 | 0.325 | 0.00 | 0.0 | 2.26 | 0.26 | | 68 | 106 | 0.275 | | 60.0 | 3.77 | 0.300 | | 35.0 | 4.09 | 0.300 | 0.02 | 0.0 | 2.05 | 0.32 | | 69 | 107 | 0.275 | | 60.0 | 3.46 | 0.300 | | 32.5 | 3.84 | 0.300 | 0.08 | 0.0 | 1.73 | 0.38 | | 70 | 108 | 0.300 | | 60.0 | 3.34 | 0.300 | | 32.5 | 3.85 | 0.300 | 0.08 | 0.0 | 1.79 | 0.50 | | 71 | 109 | 0.300 | | 60.0 | 3.10 | 0.250 | | 32.5 | 3.64 | 0.300 | 0.08 | 0.0 | 1.78 | 0.54 | | 72 | 110 | 0.300 | | 52.5 | 3.10 | 0.250 | | 32.5 | 3.37 | 0.300 | 0.08 | 0.0 | 2.10 | 0.27 | | 74 | 112 | 0.300 | 0.06 | 0.0 | 2.62 | 0.275 | | 12.5 | 2.87 | 0.200 | 0.06 | | 2.42 | 0.25 | | 91 | 129 | 0.250 | | 0.0 | 1.53 | | -0.04 | | 1.83 | 0.150 | | | 1.61 | 0.22 | | 92 | 130 | | -0.04 | | 2.09 | | -0.02 | | 2.33 | | -0.06 | 0.0 | 1.53 | 0.24 | | | Z=39 | | 0.0 - | 00.0 | | 0.200 | 0.02 | | | 0.200 | 0.00 | 0.0 | | V | | 33 | 72 | 0.250 | 0.04 | 55.0 | 3.58 | 0.250 | 0.04 | 30.0 | 3.92 | 0.300 | 0.06 | 0.0 | 3.62 | 0.30 | | 34 | 73 | 0.275 | | 60.0 | 3.70 | 0.325 | | 30.0 | 4.21 | 0.325 | 0.06 | 0.0 | 3.48 | 0.51 | | 35 | 74 | 0.300 | | 60.0 | 4.01 | 0.375 | | 35.0 | 4.57 | 0.325 | 0.06 | 0.0 | 3.48 | 0.56 | | 36 | 75 | 0.350 | | 57.5 | 4.14 | 0.400 | | 40.0 | 4.66 | 0.350 | 0.06 | 0.0 | 2.90 | 0.52 | | 38 | 77 | 0.175 | | 60.0 | 4.51 | 0.400 | | 35.0 | 4.88 | 0.375 | 0.06 | 0.0 | 1.97 | 0.36 | | 39 | 78 | 0.175 | | 60.0 | 4.45 | 0.300 | | 35.0 | 4.93 | 0.375 | 0.08 | 0.0 | 1.86 | 0.48 | | 40 | 79 | 0.000 | 0.00 | 0.0 | 4.69 | 0.075 | | 60.0 | 4.98 | 0.200 | 0.06 | | 4.12 | 0.29 | | | | 0.000 | 0.00 | 0.0 | 4.69 | 0.075 | 0.02 | 60.0 | 4.98 | 0.375 | 0.08 | 0.0 | 1.95 | 0.29 | | | | 0.200 | 0.06 | 60.0 | 4.12 | 0.300 | 0.06 | 35.0 | 4.60 | 0.375 | 0.08 | 0.0 | 1.95 | 0.48 | | 41 | 80 | 0.200 | 0.06 | 60.0 | 4.00 | 0.275 | 0.06 | 37.5 | 4.41 | 0.375 | 0.08 | 0.0 | 2.43 | 0.41 | | 42 | 81 | 0.000 | 0.00 | 0.0 | 3.95 | 0.075 | 0.02 | 60.0 | 4.34 | 0.200 | 0.06 | 60.0 | 3.60 | 0.39 | | | | 0.000 | 0.00 | 0.0 | 3.95 | 0.075 | | 60.0 | 4.34 | 0.375 | 0.08 | 0.0 | 2.82 | 0.39 | | | | 0.200 | | 60.0 | 3.60 | 0.275 | | 35.0 | 3.98 | 0.375 | 0.08 | 0.0 | 2.82 | 0.38 | | 43 | 82 | 0.025 | | 50.0 | 3.84 | 0.075 | | 60.0 | 4.12 | 0.225 | 0.06 | | 3.47 | 0.29 | | | | 0.025 | | 50.0 | 3.84 | 0.075 | | 60.0 | 4.12 | 0.375 | 0.08 | 0.0 | 3.30 | 0.29 | | | | 0.225 | | 50.0 | 3.47 | 0.300 | | 30.0 | 3.67 | 0.375 | 0.08 | 0.0 | 3.30 | 0.20 | | 60 | 99 | 0.275 | -0.02 | 60.0 | 4.61 | 0.275 | 0.00 | 45.0 | 4.86 | 0.325 | 0.00 | 0.0 | 2.38 | 0.25 | | 61 | 100 | 0.275 | 0.00 | 60.0 | 4.83 | 0.275 | 0.00 | 45.0 | 5.03 | 0.325 | 0.02 | 0.0 | 2.27 | 0.21 | | | | | | | | | | | | | - / | . • | s on novi | t paga) | Table (continued) | Nu | cleus | | Min | imum | L | | Sa | ddle | | | Min | imum | <u> </u> | S.H. | |----|----------------|--------------|--------------|----------|-------|--------------|--------------|----------|-------|--------------|--------------|----------|----------|---------------| | N | \overline{A} | ϵ_2 | ϵ_4 | γ | E | ϵ_2 | ϵ_4 | γ | E | ϵ_2 | ϵ_4 | γ | E | $E_{\rm sad}$ | | | | | | | (MeV) | | | | (MeV) | | | | (MeV) | (MeV) | | | Z = 39 | | | | | | | | | | | | | | | 68 | 107 | 0.250 | | | 3.91 | 0.300 | | | 4.16 | 0.300 | | 0.0 | 1.97 | 0.25 | | 70 | 109 | 0.250 | | | 3.49 | 0.300 | | | 3.83 | 0.300 | | 0.0 | 1.68 | 0.33 | | 71 | 110 | 0.250 | | | 3.31 | 0.275 | | | 3.58 | 0.325 | | 0.0 | 1.69 | 0.27 | | 74 | 113 | 0.225 | 0.06 | 30.0 | 2.43 | 0.275 | 0.06 | 15.0 | 2.99 | 0.325 | 0.06 | 0.0 | 2.59 | 0.40 | | | Z = 40 | | | | | | | | | | | | | | | 34 | 74 | 0.250 | | | 3.50 | 0.325 | | | 3.82 | 0.325 | | 0.0 | 3.58 | 0.24 | | 35 | 75 | 0.275 | | | 3.88 | 0.325 | | | 4.39 | 0.325 | | 0.0 | 3.54 | 0.51 | | 36 | 76 | 0.275 | | | 4.09 | 0.325 | | | 4.53 | 0.350 | | 0.0 | 3.02 | 0.44 | | 37 | 77 | 0.200 | | | 4.41 | 0.325 | | | 4.77 | 0.350 | | 0.0 | 2.68 | 0.36 | | 38 | 78 | 0.200 | | | 4.25 | 0.300 | | | 4.69 | 0.375 | | 0.0 | 2.06 | 0.44 | | 39 | 79 | 0.200 | | | 4.18 | 0.300 | | | 4.66 | 0.375 | | 0.0 | 1.88 | 0.48 | | 40 | 80 | 0.000 | | 0.0 | 4.55 | 0.075 | | | 4.77 | 0.200 | | | 3.80 | 0.22 | | | | 0.000 | | 0.0 | 4.55 | 0.075 | | | 4.77 |
0.375 | | 0.0 | 2.00 | 0.22 | | | 0.4 | 0.200 | | | 3.80 | 0.300 | | | 4.38 | 0.375 | | 0.0 | 2.00 | 0.57 | | 41 | 81 | 0.200 | | | 3.68 | 0.275 | | | 4.16 | 0.400 | | 0.0 | 2.46 | 0.49 | | 42 | 82 | 0.000 | | 0.0 | 3.78 | 0.075 | | | 4.11 | 0.225 | | | 3.26 | 0.32 | | | | 0.000 | | 0.0 | 3.78 | 0.075 | | | 4.11 | 0.375 | | 0.0 | 2.89 | 0.32 | | | | 0.225 | | | 3.26 | 0.275 | | | 3.73 | 0.375 | | 0.0 | 2.89 | 0.47 | | 43 | 83 | 0.025 | | | 3.66 | 0.100 | | | 3.90 | 0.375 | | 0.0 | 3.37 | 0.24 | | | | 0.025 | | | 3.66 | 0.100 | | | 3.90 | 0.225 | | | 3.11 | 0.24 | | | | 0.375 | | 0.0 | 3.37 | 0.350 | | 7.5 | 3.60 | 0.225 | | | 3.11 | 0.24 | | 44 | 84 | 0.000 | | 0.0 | 2.75 | 0.100 | | | 3.06 | 0.225 | | | 2.71 | 0.31 | | 67 | 107 | 0.250 | | | 3.98 | 0.275 | | | 4.20 | 0.325 | | 0.0 | 2.21 | 0.21 | | 68 | 108 | 0.250 | | | 3.67 | 0.275 | | | 4.03 | 0.325 | | 0.0 | 2.18 | 0.37 | | 69 | 109 | 0.250 | | | 3.37 | 0.275 | | | 3.73 | 0.325 | | 0.0 | 1.82 | 0.36 | | 70 | 110 | 0.250 | | | 3.23 | 0.300 | | | 3.60 | 0.325 | | 0.0 | 1.92 | 0.37 | | 71 | 111 | 0.225 | | | 3.13 | 0.275 | | | 3.39 | 0.325 | | 0.0 | 1.90 | 0.25 | | 72 | 112 | 0.225 | | | 2.93 | 0.250 | | | 3.17 | 0.325 | | 0.0 | 2.25 | 0.24 | | 73 | 113 | 0.200 | | | 2.59 | 0.275 | | | 2.90 | 0.325 | | 0.0 | 2.42 | 0.32 | | 74 | 114 | 0.325 | 0.08 | 0.0 | 2.90 | 0.275 | 0.06 | 12.5 | 3.11 | 0.175 | 0.06 | 57.5 | 2.19 | 0.20 | | | Z=41 | | | | | | | | | | | | | | | 35 | 76 | 0.275 | | | 3.71 | 0.325 | | | 4.01 | 0.300 | | 0.0 | 3.65 | 0.30 | | 36 | 77 | 0.250 | | | 3.86 | 0.300 | | | 4.22 | 0.375 | | 0.0 | 3.16 | 0.36 | | 37 | 78 | 0.225 | | | 4.13 | 0.300 | | | 4.47 | 0.375 | | 0.0 | 2.90 | 0.35 | | 38 | 79 | 0.200 | | | 3.98 | 0.300 | | | 4.34 | 0.375 | | 0.0 | 2.29 | 0.36 | | 39 | 80 | 0.200 | | | 3.91 | 0.275 | | | 4.36 | 0.400 | | 0.0 | 2.17 | 0.45 | | 40 | 81 | 0.200 | | | 3.51 | 0.275 | | | 4.05 | 0.400 | | 0.0 | 2.18 | 0.54 | | 41 | 82 | 0.225 | | | 3.34 | 0.275 | | | 3.87 | 0.400 | | 0.0 | 2.49 | 0.52 | | 42 | 83 | 0.225 | | | 2.88 | 0.375 | | | 3.64 | 0.425 | | 0.0 | 2.88 | 0.76 | | 43 | 84 | 0.400 | | 0.0 | 3.49 | 0.375 | | | 4.00 | 0.225 | | | 2.73 | 0.51 | | 68 | 109 | 0.250 | | | 3.57 | 0.275 | | | 3.87 | 0.300 | | 0.0 | 2.56 | 0.30 | | 69 | 110 | 0.250 | | | 3.23 | 0.275 | | | 3.56 | 0.300 | | 0.0 | 2.17 | 0.33 | | 70 | 111 | 0.225 | | | 3.16 | 0.275 | | | 3.41 | 0.300 | | 0.0 | 2.24 | 0.25 | | 82 | 123 | 0.425 | | 0.0 | 5.44 | 0.375 | | 0.0 | 5.76 | 0.000 | | 0.0 | -6.35 | 0.32 | | 83 | 124 | 0.425 | 0.04 | 0.0 | 5.41 | 0.375 | 0.04 | 0.0 | 5.76 | 0.025 | 0.00 | 60.0 | -5.45 | 0.35 | | | Z=42 | , , | 0.5. | ~ - | | a | 0.5- | 00:: | 0.0- | | 0.5- | 00 - | a :- | a | | 36 | 78 | 0.375 | | 0.0 | 3.44 | 0.300 | | | 3.86 | 0.250 | | | 3.48 | 0.38 | | 37 | 79 | 0.225 | | | 3.77 | 0.300 | | | 4.12 | 0.375 | | 0.0 | 3.21 | 0.35 | | 38 | 80 | 0.225 | 0.08 | 60.0 | 3.61 | 0.300 | 0.06 | 35.0 | 4.00 | 0.375 | 0.06 | 0.0 | 2.65 | 0.38 | Table (continued) | Nuc | leus | | Min | imum | L | | Sa | ddle | | | Min | imum | | S.H. | |----------------|----------------|---------------|--------------|----------|-------------|---------------|--------------|----------|---------------------|---------------|--------------|----------|---------------------|----------------| | \overline{N} | \overline{A} | ϵ_2 | ϵ_4 | γ | E | ϵ_2 | ϵ_4 | γ | E | ϵ_2 | ϵ_4 | γ | E | $E_{\rm sad}$ | | | | | | | (MeV) | | | | (MeV) | | | | (MeV) | (MeV) | | \overline{z} | 7 = 4 | 2 (Mo) | | | | | | | | | | | | | | 39 | 81 | 0.200 | 0.08 | 60.0 | 3.58 | 0.275 | 0.06 | 37.5 | 3.98 | 0.400 | 0.08 | 0.0 | 2.52 | 0.41 | | 40 | 82 | 0.000 | 0.00 | 0.0 | 4.27 | 0.075 | 0.00 | 60.0 | 4.49 | 0.225 | 0.08 | 60.0 | 3.14 | 0.21 | | | | 0.000 | 0.00 | 0.0 | 4.27 | 0.075 | 0.00 | 60.0 | 4.49 | 0.400 | 0.08 | 0.0 | 2.57 | 0.21 | | | | 0.225 | 0.08 | 60.0 | 3.14 | 0.275 | 0.06 | 37.5 | 3.68 | 0.400 | 0.08 | 0.0 | 2.57 | 0.54 | | 41 | 83 | 0.225 | 0.08 | 60.0 | 2.96 | 0.375 | 0.08 | 15.0 | 3.63 | 0.425 | 0.08 | 0.0 | 2.75 | 0.67 | | 42 | 84 | 0.000 | 0.00 | 0.0 | 3.48 | 0.100 | 0.02 | 60.0 | 3.81 | 0.225 | 0.08 | 60.0 | 2.50 | 0.33 | | 43 | 85 | 0.425 | 0.08 | 0.0 | 3.77 | 0.375 | 0.06 | 12.5 | 4.29 | 0.025 | 0.00 | 45.0 | 3.33 | 0.52 | | | | 0.425 | 0.08 | 0.0 | 3.77 | 0.375 | 0.06 | 12.5 | 4.29 | 0.225 | 0.08 | 57.5 | 2.33 | 0.52 | | | | 0.025 | 0.00 | 45.0 | 3.33 | 0.100 | 0.02 | 60.0 | 3.59 | 0.225 | 0.08 | 57.5 | 2.33 | 0.26 | | 44 | 86 | 0.425 | 0.08 | 0.0 | 4.41 | 0.375 | 0.06 | 10.0 | 4.65 | 0.025 | 0.00 | 2.5 | 2.40 | 0.25 | | | | 0.425 | 0.08 | 0.0 | 4.41 | 0.375 | 0.06 | 10.0 | 4.65 | 0.225 | 0.08 | 60.0 | 1.92 | 0.25 | | | | 0.025 | 0.00 | 2.5 | 2.40 | 0.100 | 0.02 | 60.0 | 2.75 | 0.225 | 0.08 | 60.0 | 1.92 | 0.35 | | 45 | 87 | 0.025 | 0.00 | 0.0 | 1.98 | 0.150 | 0.02 | 30.0 | 2.30 | 0.225 | 0.08 | 55.0 | 1.68 | 0.32 | | 68 | 110 | 0.250 | 0.08 | 60.0 | 3.16 | 0.275 | 0.06 | 42.5 | 3.56 | 0.300 | 0.06 | 0.0 | 2.88 | 0.39 | | | 111 | 0.250 | 0.08 | 60.0 | 2.82 | 0.275 | 0.06 | 42.5 | 3.26 | 0.300 | 0.08 | 0.0 | 2.53 | 0.44 | | | 112 | 0.250 | | | 2.68 | 0.250 | | | 3.05 | 0.275 | | 0.0 | 2.55 | 0.37 | | 71 | 113 | 0.275 | 0.08 | 0.0 | 2.47 | 0.250 | 0.04 | 32.5 | 2.84 | 0.225 | 0.06 | 60.0 | 2.57 | 0.27 | | | 125 | 0.425 | | 0.0 | 5.45 | 0.375 | 0.04 | 0.0 | 6.18 | 0.025 | | | -6.02 | 0.73 | | | 126 | 0.425 | | 0.0 | 5.64 | 0.375 | | 0.0 | 6.15 | 0.000 | | 0.0 | -5.03 | 0.52 | | | 127 | 0.425 | | 0.0 | 5.74 | 0.375 | | | 6.02 | 0.000 | | 0.0 | -4.01 | 0.29 | | | 143 | 0.300 | | | 1.75 | 0.300 | | | 1.95 | 0.300 | | 0.0 | 1.11 | 0.21 | | | 144 | 0.300 | | | 1.80 | 0.300 | | | 2.08 | 0.300 | | 0.0 | 1.14 | 0.27 | | | | 3 (Tc) | 0.00 | 00 | | 0.000 | 0.0_ | | | 0.000 | 0.0 - | 0.0 | | · · - · | | 38 | 81 | 0.225 | 0.08 | 60 O | 3.25 | 0.300 | 0.04 | 25.0 | 3.59 | 0.375 | 0.06 | 0.0 | 2.95 | 0.34 | | 39 | 82 | 0.225 | | | 3.20 | 0.300 | | | 3.56 | 0.375 | | 0.0 | 2.91 | 0.36 | | 40 | 83 | 0.400 | | 0.0 | 3.03 | 0.350 | | | 3.59 | 0.225 | | | 2.74 | 0.57 | | 41 | 84 | 0.425 | | 0.0 | 3.38 | 0.375 | | | 3.83 | 0.225 | | | 2.56 | 0.45 | | 42 | 85 | 0.425 | | 0.0 | 3.73 | 0.375 | | | 4.20 | 0.025 | | | 3.20 | 0.47 | | 12 | 00 | 0.425 | | 0.0 | 3.73 | 0.375 | | | 4.20 | 0.225 | | | 2.08 | 0.47 | | | | 0.025 | | | 3.20 | 0.100 | | | 3.54 | 0.225 | | | 2.08 | 0.33 | | 43 | 86 | 0.025 | | | 3.02 | 0.100 0.125 | | | 3.33 | 0.225 | | | 1.88 | 0.31 | | 44 | 87 | 0.025 | | | 2.07 | 0.125 | | | 2.43 | 0.225 | | | 1.49 | 0.37 | | 45 | 88 | 0.025 | | | 1.65 | 0.120 | | | 1.90 | 0.250 | | | 1.28 | 0.25 | | | 111 | 0.025 0.250 | | | 2.90 | 0.150 0.250 | | | 3.19 | 0.250 0.275 | | | $\frac{1.26}{2.87}$ | 0.29 | | | 112 | 0.250 0.250 | | | 2.50 2.54 | 0.230 0.275 | | | $\frac{3.19}{2.96}$ | 0.275 | | 0.0 | $\frac{2.57}{2.58}$ | 0.29 0.38 | | | 144 | 0.230 0.275 | | | 1.63 | 0.300 | | | 1.86 | 0.275 | | 0.0 | 1.13 | 0.33 | | | 144 | 0.275 | | | 1.70 | 0.300 | | | 1.96 | 0.275 | | 0.0 | 1.13 1.23 | 0.23 0.27 | | | 146 | 0.300 | | | 1.47 | 0.300 | | | 1.75 | 0.300 | | 0.0 | 0.96 | 0.21 | | | 140 147 | 0.300 0.275 | | | 1.49 | 0.300 | | | 1.75 | 0.300 0.275 | | | 1.14 | $0.28 \\ 0.37$ | | | | | 0.02 | 32.3 | 1.43 | 0.300 | 0.04 | 30.0 | 1.00 | 0.210 | 0.04 | 0.0 | 1.14 | 0.51 | | | | 4 (Ru) | 0.06 | 0.0 | 2.07 | 0.205 | 0.04 | 10.0 | 2.40 | 0.005 | 0.00 | F0 F | 2.05 | 0.00 | | 38 | | 0.375 | | 0.0 | 3.27 | 0.325 | | | 3.48 | 0.225 | | | 2.95 | 0.20 | | 39 | 83 | 0.375 | | 0.0 | 3.24 | 0.325 | | | 3.57 | 0.225 | | | 2.93 | 0.33 | | 40 | 84 | 0.400 | | 0.0 | 3.45 | 0.350 | | | 3.72 | 0.000 | | | 3.29 | 0.27 | | | | 0.400 | | 0.0 | 3.45 | 0.350 | | | 3.72 | 0.225 | | | 2.48 | 0.27 | | 4.4 | C = | 0.000 | | 0.0 | 3.29 | 0.075 | | | 3.65 | 0.225 | | | 2.48 | 0.36 | | 41 | 85 | 0.400 | | 0.0 | 3.78 | 0.400 | | | 4.02 | 0.225 | | | 2.30 | 0.24 | | 42 | 86 | 0.000 | | 0.0 | 2.47 | 0.100 | | | 2.96 | 0.225 | | | 1.83 | 0.50 | | 43 | 87 | 0.025 | | | 2.32 | 0.125 | | | 2.73 | 0.250 | | | 1.67 | 0.41 | | 44 | 88 | 0.000 | | 0.0 | 1.32 | 0.150 | | | 1.92 | 0.250 | | | 1.21 | 0.60 | | 45 | 89 | 0.000 | 0.00 | 0.0 | 0.91 | 0.175 | 0.00 | 17.5 | 1.42 | 0.250 | 0.06 | 37.5 | 0.89 | 0.51 | Table (continued) | Nucleus | | Minir | num | | | Sad | ldle | | | Min | imum | | S.H. | |--|------------------|----------------|----------|----------------|------------------|--------------|----------|---------------------|------------------|--------------|--------------|---------------------|----------------| | \overline{N} A | ϵ_2 | ϵ_4 | γ | E | ϵ_2 | ϵ_4 | γ | E | ϵ_2 | ϵ_4 | γ | E | $E_{\rm sad}$ | | | | | | (MeV) | | | | (MeV) | | | | (MeV) | (MeV) | | Z = 44 (I) | Ru)
0.275 | 0.00 | 20 5 | 1 60 | 0.275 | 0.00 | 30.0 | 1 01 | 0.275 | 0.09 | 0.0 | 1 25 | 0.92 | | 101 145 | | 0.00 | | 1.68 | | | 30.0 | 1.91 | $0.275 \\ 0.275$ | | 0.0 | 1.35 | $0.23 \\ 0.27$ | | $\begin{array}{cc} 102 & 146 \\ 103 & 147 \end{array}$ | $0.275 \\ 0.275$ | $0.02 \\ 0.02$ | | 1.73 | $0.275 \\ 0.275$ | | 30.0 | $\frac{2.00}{1.77}$ | 0.275 0.275 | | $0.0 \\ 5.0$ | $1.45 \\ 1.22$ | 0.27 0.29 | | 105 147 104 148 | 0.275 | 0.02 0.02 | | $1.48 \\ 1.53$ | 0.275 0.275 | | 30.0 | 1.77 | 0.275 0.275 | | | $\frac{1.22}{1.34}$ | 0.29 0.30 | | 104 148 | 0.275 | 0.02 0.04 | | 1.33 1.21 | 0.275 0.275 | | 30.0 | 1.53 | 0.275 0.275 | | | 1.34 1.09 | 0.30 0.32 | | 105 149 | 0.275 | 0.04 0.06 | | 1.21 1.21 | 0.275 0.275 | | 30.0 | 1.53 1.53 | 0.275 0.275 | | | 1.18 | 0.32 0.32 | | Z = 45 () | | 0.00 | 20.0 | 1.21 | 0.275 | 0.04 | 30.0 | 1.00 | 0.275 | 0.04 | 32.3 | 1.10 | 0.32 | | 2 = 45 (1) $42 = 87$ | 0.000 | 0.00 | 0.0 | 1.91 | 0.125 | 0.00 | 27.5 | 2.30 | 0.250 | 0.08 | 45 O | 1.41 | 0.38 | | 43 88 | 0.025 | 0.00 | | 1.74 | 0.125 0.150 | | | 2.06 | 0.250 | | | 1.19 | 0.32 | | 44 89 | 0.000 | 0.00 | 0.0 |
0.75 | 0.175 | | 20.0 | 1.23 | 0.250 | | | 0.70 | 0.32 0.47 | | 45 90 | | -0.02 | 0.0 | 0.33 | 0.200 | | 25.0 | 0.66 | 0.250 | | | 0.38 | 0.27 | | 101 146 | 0.275 | 0.00 | | 1.62 | 0.275 | | 30.0 | 1.82 | 0.275 | | 5.0 | 1.28 | 0.20 | | 102 147 | 0.275 | 0.02 | | 1.64 | 0.275 | | 30.0 | 1.87 | 0.275 | | 5.0 | 1.37 | 0.23 | | 103 148 | 0.275 | 0.02 | | 1.39 | 0.275 | | 30.0 | 1.65 | 0.275 | | | 1.17 | 0.26 | | 104 149 | 0.275 | 0.02 | | 1.44 | 0.275 | | 30.0 | 1.68 | 0.275 | | | 1.25 | 0.25 | | 105 150 | 0.275 | 0.04 | | 0.99 | 0.275 | | 30.0 | 1.40 | 0.275 | | | 1.10 | 0.30 | | Z=46 (1 | | 0.01 | 11.0 | 0.00 | 0.2.0 | 0.01 | 00.0 | 1110 | 0.2.0 | 0.01 | 00 | 1,10 | 0.00 | | 40 86 | 0.000 | 0.00 | 0.0 | 1.89 | 0.100 | 0.02 | 60.0 | 2.12 | 0.225 | 0.08 | 60.0 | 1.80 | 0.22 | | 42 88 | 0.225 | 0.08 | | 1.18 | 0.150 | | 30.0 | 1.62 | 0.000 | | 0.0 | 1.08 | 0.44 | | 43 89 | 0.025 | 0.00 | | 0.91 | 0.175 | | 25.0 | 1.37 | 0.250 | | | 0.98 | 0.39 | | 69 115 | 0.225 | 0.06 | 0.0 | 2.09 | 0.250 | | 22.5 | 2.31 | 0.250 | | | 1.59 | 0.22 | | 103 149 | 0.275 | 0.02 | | 1.57 | 0.275 | | 30.0 | 1.78 | 0.250 | | | 1.22 | 0.21 | | 104 150 | 0.275 | 0.02 | | 1.62 | 0.275 | | 30.0 | 1.83 | 0.275 | | | 1.38 | 0.21 | | Z=47 (A | \mathbf{Ag}) | | | | | | | | | | | | | | 65 112 | 0.225 | 0.04 | 12.5 | 2.52 | 0.225 | 0.04 | 35.0 | 2.76 | 0.250 | 0.04 | 55.0 | 2.44 | 0.25 | | 66 113 | 0.200 | 0.04 | 0.0 | 2.41 | 0.225 | 0.04 | 32.5 | 2.69 | 0.225 | 0.04 | 60.0 | 2.19 | 0.29 | | 67 114 | 0.225 | 0.04 | 5.0 | 2.22 | 0.225 | 0.04 | 35.0 | 2.59 | 0.250 | 0.06 | 57.5 | 1.94 | 0.37 | | 68 115 | 0.200 | 0.04 | 0.0 | 2.03 | 0.200 | 0.04 | 32.5 | 2.45 | 0.250 | 0.06 | 60.0 | 1.56 | 0.43 | | 69 116 | 0.200 | 0.06 | 0.0 | 1.74 | 0.200 | 0.04 | 32.5 | 2.22 | 0.250 | 0.06 | 60.0 | 1.25 | 0.48 | | 70 117 | 0.200 | 0.06 | 0.0 | 1.53 | 0.175 | 0.04 | 25.0 | 1.85 | 0.250 | 0.06 | 60.0 | 1.11 | 0.32 | | 71 118 | 0.200 | 0.06 | 0.0 | 1.20 | 0.175 | 0.04 | 32.5 | 1.48 | 0.250 | 0.06 | 57.5 | 0.93 | 0.29 | | $106 \ 153$ | 0.250 | 0.02 | 60.0 | 1.61 | 0.250 | 0.02 | 45.0 | 1.88 | 0.250 | 0.04 | 12.5 | 1.11 | 0.27 | | $107 \ 154$ | 0.275 | 0.06 | 32.5 | 0.95 | 0.275 | 0.06 | 30.0 | 1.23 | 0.250 | 0.06 | 15.0 | 0.90 | 0.28 | | $108 \ 155$ | 0.275 | 0.06 | | 0.93 | 0.250 | | 30.0 | 1.26 | 0.225 | | | 0.96 | 0.30 | | $109 \ 156$ | 0.250 | 0.06 | | 0.64 | 0.250 | 0.06 | 30.0 | 0.89 | 0.200 | | | 0.63 | 0.25 | | $110 \ 157$ | 0.250 | 0.06 | | 0.58 | 0.250 | | 30.0 | 0.89 | 0.200 | | | 0.63 | 0.26 | | $111 \ 158$ | 0.250 | 0.06 | | 0.19 | 0.200 | | 30.0 | 0.57 | 0.200 | | | 0.19 | 0.39 | | $112 \ 159$ | 0.225 | 0.06 | | 0.03 | 0.200 | | 30.0 | 0.41 | 0.200 | | | 0.16 | 0.25 | | $113 \ 160$ | 0.225 | 0.08 | 45.0 | -0.60 | 0.200 | 0.06 | 25.0 | 0.01 | 0.175 | 0.08 | 0.0 | -0.31 | 0.32 | | Z=48 (0 | , | | | | | | | | | | | | | | $65 \ 113$ | 0.200 | 0.02 | | 2.22 | 0.100 | 0.00 | | 2.43 | 0.175 | | | 2.10 | 0.21 | | 66 114 | 0.175 | 0.04 | 0.0 | 2.00 | 0.125 | | 30.0 | 2.29 | 0.225 | | | 1.98 | 0.29 | | 67 115 | 0.175 | 0.04 | 0.0 | 1.92 | 0.125 | | 22.5 | 2.26 | 0.225 | | | 1.75 | 0.34 | | 68 116 | 0.175 | 0.04 | 0.0 | 1.68 | 0.125 | | 25.0 | 1.95 | 0.225 | | | 1.44 | 0.27 | | 69 117 | 0.175 | 0.04 | | 1.44 | 0.125 | | 20.0 | 1.76 | 0.225 | | | 1.18 | 0.32 | | $104 \ 152$ | 0.250 | 0.02 | | 2.12 | 0.250 | | 45.0 | 2.40 | 0.250 | | | 1.13 | 0.29 | | $105 \ 153$ | 0.250 | 0.02 | | 1.78 | 0.275 | | 45.0 | 2.04 | 0.250 | | | 0.98 | 0.27 | | $106 \ 154$ | 0.250 | 0.02 | | 1.70 | 0.275 | | 45.0 | 2.02 | 0.225 | | | 1.13 | 0.32 | | 107 155 | 0.250 | 0.02 | 60.0 | 1.44 | 0.275 | 0.02 | 42.5 | 1.74 | 0.275 | 0.06 | 32.5 | 1.30 | 0.30 | Table (continued) | Nuc | leus | | Mini | mum | | | Sad | ldle | | | Mini | mum | | S.H. | |------------------|------|-------------------------------------|--------------|--------------|---------------------|---------------|--------------|----------|-------|---------------|--------------|----------|----------------|---------------| | \overline{N} | A | ϵ_2 | ϵ_4 | γ | E | ϵ_2 | ϵ_4 | γ | E | ϵ_2 | ϵ_4 | γ | E | $E_{\rm sad}$ | | | | | | | (MeV) | | | | (MeV) | | | | (MeV) | (MeV) | | | = 48 | ` ' | | | | | | | | | | | | | | 107 | 155 | 0.250 | 0.02 | 60.0 | 1.44 | 0.275 | 0.02 | 42.5 | 1.74 | 0.225 | 0.04 | 0.0 | 0.97 | 0.30 | | | | 0.275 | 0.06 | 32.5 | 1.30 | 0.275 | 0.06 | 30.0 | 1.53 | 0.225 | 0.04 | 0.0 | 0.97 | 0.23 | | 108 | 156 | 0.250 | 0.02 | 60.0 | 1.44 | 0.250 | 0.04 | 45.0 | 1.73 | 0.275 | 0.06 | 32.5 | 1.28 | 0.29 | | | | 0.250 | 0.02 | 60.0 | 1.44 | 0.250 | 0.04 | 45.0 | 1.73 | 0.200 | 0.06 | 0.0 | 0.97 | 0.29 | | | | 0.275 | 0.06 | 32.5 | 1.28 | 0.250 | 0.06 | 30.0 | 1.55 | 0.200 | 0.06 | 0.0 | 0.97 | 0.27 | | 109 | 157 | 0.250 | 0.06 | 32.5 | 0.98 | 0.250 | 0.06 | 30.0 | 1.20 | 0.200 | 0.06 | 0.0 | 0.59 | 0.22 | | 110 | 158 | 0.225 | 0.06 | 32.5 | 0.89 | 0.200 | 0.04 | 30.0 | 1.17 | 0.200 | 0.06 | 0.0 | 0.59 | 0.28 | | 111 | 159 | 0.225 | 0.06 | 32.5 | 0.42 | 0.200 | 0.06 | 30.0 | 0.75 | 0.175 | 0.06 | 0.0 | 0.14 | 0.33 | | 112 | 160 | 0.200 | 0.06 | 32.5 | 0.31 | 0.175 | 0.04 | 30.0 | 0.52 | 0.175 | 0.06 | 0.0 | -0.01 | 0.21 | | 113 | 161 | 0.200 | 0.06 | 42.5 | -0.23 | 0.175 | 0.04 | 30.0 | 0.02 | 0.150 | 0.06 | 0.0 | -0.48 | 0.26 | | Z | = 49 | (In) | | | | | | | | | | | | | | 103 | | 0.250 | 0.02 | 60.0 | 2.25 | 0.200 | 0.00 | 42.5 | 2.46 | 0.250 | 0.02 | 0.0 | 0.78 | 0.22 | | 104 | | 0.250 | | 60.0 | 2.10 | 0.200 | | 42.5 | 2.42 | 0.250 | 0.02 | 0.0 | 0.95 | 0.33 | | 105 | | 0.250 | | 60.0 | 1.75 | 0.275 | | 45.0 | 2.09 | 0.250 | 0.04 | 0.0 | 0.80 | 0.34 | | 106 | | 0.250 | | 60.0 | 1.65 | 0.275 | | 42.5 | 2.07 | 0.225 | 0.04 | 0.0 | 0.89 | 0.41 | | 107 | | 0.275 | | 60.0 | 1.30 | 0.275 | | 42.5 | 1.81 | 0.225 | 0.04 | 0.0 | 0.73 | 0.51 | | 108 | | 0.275 | | 60.0 | 1.32 | 0.200 | | 42.5 | 1.70 | 0.200 | 0.04 | 0.0 | 0.77 | 0.39 | | | | (Sn) | 0.01 | 00.0 | 1.02 | 0.200 | 0.02 | 12.0 | 1.10 | 0.200 | 0.04 | 0.0 | 0.11 | 0.00 | | 105 | | 0.175 | -0.02 | 60.0 | 2.04 | 0.150 | -0.02 | 40.0 | 2.26 | 0.225 | 0.02 | 0.0 | 0.72 | 0.22 | | 105 107 | | 0.175 0.275 | | 60.0 | $\frac{2.04}{1.65}$ | 0.130 0.225 | | 60.0 | 1.88 | 0.225 0.225 | 0.04 | 0.0 | $0.72 \\ 0.75$ | 0.22 0.23 | | | | | 0.04 | 00.0 | 1.00 | 0.225 | 0.02 | 00.0 | 1.00 | 0.220 | 0.04 | 0.0 | 0.75 | 0.23 | | | | (Sb) | 0.00 | <i>c</i> o o | 1.00 | 0.155 | 0.00 | 40.0 | 0.10 | 0.005 | 0.00 | 0.0 | 0.60 | 0.01 | | 105 | | 0.175 | | | 1.89 | 0.175 | -0.02 | | 2.10 | 0.225 | 0.02 | 0.0 | 0.62 | 0.21 | | 119 | | 0.125 | | 52.5 | -4.48 | 0.125 | | 32.5 | -4.22 | 0.100 | | 30.0 | -4.62 | 0.25 | | 120 | | 0.425 | | 15.0 | 4.82 | 0.375 | | 22.5 | 5.07 | 0.075 | | 30.0 | -5.19 | 0.25 | | 121 | | 0.425 | 0.02 | 15.0 | 4.57 | 0.375 | 0.02 | 22.5 | 4.97 | 0.075 | 0.02 | 30.0 | -6.36 | 0.39 | | | = 52 | ` / | | | | | | | | | | | | | | | 117 | 0.150 | | | 1.99 | | -0.02 | | 2.19 | 0.200 | -0.02 | 0.0 | 1.88 | 0.20 | | | 119 | 0.200 | 0.00 | 2.5 | 1.83 | 0.150 | | | 2.11 | 0.175 | | 60.0 | 1.62 | 0.27 | | 119 | | 0.125 | | 55.0 | -3.95 | 0.100 | | 35.0 | -3.60 | 0.100 | | 15.0 | -4.04 | 0.36 | | 120 | | 0.425 | | 17.5 | 4.82 | 0.350 | | 25.0 | 5.31 | 0.075 | | 30.0 | -4.52 | 0.48 | | 121 | | 0.425 | | 17.5 | 4.58 | 0.375 | | 25.0 | 5.08 | 0.075 | | 30.0 | -5.69 | 0.50 | | 123 | | 0.425 | | 17.5 | 4.47 | 0.400 | | 25.0 | 4.88 | 0.050 | | 52.5 | -7.86 | 0.42 | | 124 | 176 | 0.425 | 0.02 | 17.5 | 4.58 | 0.400 | 0.02 | 25.0 | 4.81 | 0.050 | 0.02 | 60.0 | -8.75 | 0.23 | | \boldsymbol{Z} | =53 | $\mathbf{S}\left(\mathbf{I}\right)$ | | | | | | | | | | | | | | 95 | 148 | 0.350 | 0.04 | 60.0 | 4.80 | 0.300 | 0.00 | 60.0 | 5.07 | 0.200 | -0.06 | 7.5 | 0.09 | 0.27 | | 118 | 171 | 0.400 | 0.00 | 15.0 | 5.03 | 0.375 | 0.02 | 25.0 | 5.25 | 0.100 | 0.04 | 0.0 | -2.77 | 0.23 | | 119 | 172 | 0.400 | 0.02 | 15.0 | 4.77 | 0.375 | 0.02 | 25.0 | 5.21 | 0.125 | 0.02 | 55.0 | -3.55 | 0.44 | | | | 0.400 | 0.02 | 15.0 | 4.77 | 0.375 | 0.02 | 25.0 | 5.21 | 0.100 | 0.04 | 15.0 | -3.66 | 0.44 | | | | 0.125 | 0.02 | 55.0 | -3.55 | 0.100 | 0.02 | 32.5 | -3.18 | 0.100 | 0.04 | 15.0 | -3.66 | 0.37 | | 120 | 173 | 0.425 | 0.02 | 17.5 | 4.73 | 0.375 | 0.02 | 27.5 | 5.26 | 0.125 | 0.02 | 60.0 | -4.09 | 0.53 | | | | 0.425 | 0.02 | 17.5 | 4.73 | 0.375 | 0.02 | 27.5 | 5.26 | 0.100 | 0.02 | 30.0 | -4.17 | 0.53 | | | | 0.125 | 0.02 | 60.0 | -4.09 | 0.100 | 0.02 | 42.5 | -3.81 | 0.100 | 0.02 | 30.0 | -4.17 | 0.27 | | 124 | 177 | 0.425 | 0.02 | 17.5 | 4.50 | 0.400 | 0.02 | 27.5 | 4.89 | 0.050 | 0.02 | 60.0 | -8.17 | 0.39 | | 125 | 178 | 0.425 | 0.02 | 20.0 | 4.32 | 0.400 | | 27.5 | 4.62 | 0.000 | 0.00 | 0.0 | -9.76 | 0.30 | | | | (X e) | | | | | | | | | | | | | | | 107 | 0.400 | 0.06 | 50.0 | 3.77 | 0.350 | 0.02 | 47.5 | 3.97 | 0.125 | -0.06 | 7.5 | -2.73 | 0.21 | | 117 | | 0.400 | | 17.5 | 5.05 | 0.375 | 0.02 | | 5.36 | 0.125 | 0.04 | 0.0 | | 0.31 | | 118 | | 0.400 | | 15.0 | 5.05 | 0.375 | | 25.0 | 5.52 | 0.100 | 0.04 | | -2.08 | 0.47 | | | | | | | | | | | - | | | | | | Table (continued) | Nucleus | Minimum | Saddle | | Minimum | S.H. | |-----------------|-------------------------------------|------------------------------------|---------------------|-------------------------------------|---------------| | N A | $\epsilon_2 \epsilon_4 \gamma E$ | ϵ_2 ϵ_4 γ | E ϵ_2 | $\epsilon_4 \qquad \gamma \qquad E$ | $E_{\rm sad}$ | | | (MeV) | | (MeV) | (MeV) | (MeV) | | Z=54 (| | | | | | | $119 \ 173$ | 0.400 0.02 15.0 4.79 | 0.375 0.00 25.0 | 5.47 0.100 | 0.04 0.0 -2.95 | 0.68 | | $120 \ 174$ | $0.425 \ 0.02 \ 15.0 \ 4.76$ | 0.375 0.00 25.0 | 5.55 0.125 | $0.02 \ 60.0 \ -3.35$ | 0.79 | | | $0.425 \ 0.02 \ 15.0 \ 4.76$ | 0.375 0.00 25.0 | 5.55 0.100 | $0.02 \ 30.0 \ -3.42$ | 0.79 | | | $0.125 \ 0.02 \ 60.0 \ -3.35$ | 0.100 0.02 32.5 | -3.02 0.100 | $0.02 \ 30.0 \ -3.42$ | 0.33 | | $121 \ 175$ | 0.425 0.02 15.0 4.53 | 0.375 0.00 25.0 | $5.45 \qquad 0.125$ | $0.02 \ 60.0 \ -4.39$ | 0.92 | |
| 0.425 0.02 15.0 4.53 | 0.375 0.00 25.0 | 5.45 0.100 | $0.02 \ 30.0 \ -4.49$ | 0.92 | | | $0.125 \ 0.02 \ 60.0 \ -4.39$ | | | $0.02 \ 30.0 \ -4.49$ | 0.23 | | $122 \ 176$ | $0.425 \ 0.02 \ 15.0 \ 4.64$ | 0.375 0.00 25.0 | $5.47 \qquad 0.075$ | $0.02 \ 30.0 \ -5.04$ | 0.83 | | $123 \ 177$ | $0.425 \ 0.02 \ 17.5 \ 4.43$ | 0.400 0.00 27.5 | $5.24 \qquad 0.050$ | $0.02\ 50.0\ -6.36$ | 0.81 | | $124 \ 178$ | 0.425 0.04 15.0 4.56 | | | $0.02 \ 60.0 \ -7.26$ | 0.60 | | $125 \ 179$ | 0.425 0.02 20.0 4.41 | | | 0.00 0.0 -8.87 | 0.47 | | 126 180 | 0.425 0.04 17.5 4.56 | | | 0.00 0.0 -9.65 | 0.22 | | Z=55 (| | | | | | | 53 108 | 0.400 0.04 50.0 3.58 | 0.350 0.02 47.5 | 3.91 0.125 | -0.04 0.0 -1.93 | 0.33 | | 54 109 | 0.425 0.06 50.0 3.69 | | | -0.04 0.0 -1.33 | 0.34 | | 55 110 | 0.425 0.06 50.0 3.70 | | | -0.04 0.0 -0.68 | 0.40 | | 56 111 | 0.425 0.06 50.0 3.89 | | | -0.02 0.0 -0.11 | 0.29 | | 81 136 | 0.425 0.04 5.0 7.09 | | | 0.02 0.0 0.11 $0.00 0.0 -5.67$ | 0.23 | | 116 171 | 0.375 0.02 15.0 5.23 | | | 0.04 0.0 -0.76 | 0.28 | | 117 172 | 0.400 0.02 12.5 5.00 | | | 0.04 0.0 0.70 $0.04 0.0 -1.34$ | 0.28 | | 118 173 | 0.400 0.02 12.5 3.00 | | | 0.04 0.0 -1.54 $0.04 0.0 -1.69$ | 0.59 | | 119 174 | $0.400 \ 0.02 \ 12.5 \ 4.64$ | | | 0.04 0.0 -1.09 $0.04 0.0 -2.58$ | 0.93 | | 119 174 120 175 | | | | | 1.05 | | | | | | | | | $121 \ 176$ | 0.425 0.02 15.0 4.44 | | | $0.02 \ 60.0 \ -3.93$ | 1.12 | | | 0.425 0.02 15.0 4.44 | | | $0.04 \ 30.0 \ -4.03$ | 1.12 | | 100 155 | $0.125 \ 0.02 \ 60.0 \ -3.93$ | | | $0.04 \ 30.0 \ -4.03$ | 0.27 | | 122 177 | 0.425 0.04 15.0 4.51 | | | $0.02 \ 30.0 \ -4.55$ | 1.06 | | 123 178 | 0.425 0.04 15.0 4.30 | | | $0.02 \ 57.5 \ -5.85$ | 1.09 | | 124 179 | 0.425 0.04 15.0 4.41 | | | $0.02 \ 60.0 \ -6.75$ | 0.93 | | 125 180 | 0.425 0.04 15.0 4.29 | | | 0.00 0.0 -8.33 | 0.80 | | 126 181 | 0.425 0.04 15.0 4.42 | | | 0.00 0.0 -9.08 | 0.54 | | $127 \ 182$ | 0.425 0.04 17.5 4.36 | | | $0.00 \ 42.5 \ -8.19$ | 0.31 | | 129 184 | $0.425 \ 0.08 \ 2.5 \ 4.19$ | | | $0.00 \ 25.0 \ -6.16$ | 0.22 | | $130 \ 185$ | $0.425 \ 0.08 \ 2.5 \ 4.21$ | 0.400 0.04 15.0 | $4.54 \qquad 0.000$ | 0.00 0.0 -4.90 | 0.33 | | Z=56 (| Ba) | | | | | | $53\ 109$ | 0.400 0.04 50.0 3.71 | 0.350 0.02 47.5 | 4.00 0.150 | -0.04 7.5 -1.16 | 0.29 | | 54 110 | $0.425 \ 0.06 \ 50.0 \ 3.78$ | 0.350 0.02 45.0 | $4.13 \qquad 0.150$ | -0.04 0.0 -0.58 | 0.35 | | $79 \ 135$ | $0.425 \ 0.04 \ 0.0 \ 6.45$ | 0.375 0.04 0.0 | 6.86 0.100 | $0.02 \ 32.5 \ -2.21$ | 0.40 | | 81 137 | $0.425 \ 0.04 \ 0.0 \ 6.49$ | 0.375 0.02 0.0 | 6.91 0.050 | 0.00 0.0 -4.73 | 0.42 | | 82 138 | $0.425 \ 0.04 \ 0.0 \ 6.72$ | 0.375 0.02 0.0 | $6.95 \qquad 0.000$ | 0.00 0.0 -6.11 | 0.23 | | $117 \ 173$ | 0.375 0.00 7.5 5.00 | 0.350 0.02 5.0 | 5.35 0.150 | 0.04 0.0 -1.02 | 0.35 | | $118 \ 174$ | 0.375 0.00 7.5 4.95 | 0.350 0.02 5.0 | 5.44 0.125 | 0.04 0.0 -1.26 | 0.49 | | 119 175 | 0.400 0.02 10.0 4.67 | | | 0.04 0.0 -1.99 | 0.74 | | $120 \ 176$ | 0.400 0.02 10.0 4.72 | | | $0.04 \ 12.5 \ -2.34$ | 0.80 | | $121 \ 177$ | 0.400 0.02 10.0 4.56 | | | $0.02 \ 60.0 \ -3.20$ | 0.85 | | | 0.400 0.02 10.0 4.56 | | | $0.04 \ 30.0 \ -3.37$ | 0.85 | | | $0.125 \ 0.02 \ 60.0 \ -3.20$ | | | $0.04 \ 30.0 \ -3.37$ | 0.23 | | 122 178 | 0.425 0.04 12.5 4.63 | | | $0.02 \ 30.0 \ -3.84$ | 0.91 | | 123 179 | 0.425 0.04 12.5 4.43 | | | $0.02 \ 57.5 \ -5.13$ | 1.13 | | 124 180 | 0.425 0.04 12.5 4.53 | | | $0.02 \ 60.0 \ -6.01$ | 1.06 | | | 110C | | | | | Table (continued) | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $ | Nuc | eleus | Minimu | m | | Sac | ldle | | | Mini | mum | | S.H. | |--|----------------|----------------|------------------------------------|----------|--------------|--------------|----------|-------|--------------|--------------|----------|-------|---------------| | Z = 56 (Ba) | \overline{N} | \overline{A} | ϵ_2 ϵ_4 γ | E | ϵ_2 | ϵ_4 | γ | E | ϵ_2 | ϵ_4 | γ | E | $E_{\rm sad}$ | | 125 181 | | | | (MeV) | | | | (MeV) | | | | (MeV) | (MeV) | | 126 182 | \overline{z} | Z = 56 | 6 (Ba) | | | | | | | | | | | | 127 183 | 125 | 181 | $0.425 \ 0.04 \ 12.$ | 5 4.40 | 0.375 | 0.00 | 27.5 | 5.36 | 0.000 | 0.00 | 0.0 | -7.55 | 0.97 | | 128 184 | 126 | 182 | $0.425 \ 0.06 \ 12.$ | 5 4.54 | 0.375 | 0.00 | 27.5 | 5.24 | 0.000 | 0.00 | 0.0 | -8.21 | 0.69 | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 127 | 183 | $0.425 \ 0.06 \ 10.$ | 0 4.35 | 0.400 | 0.02 | 27.5 | 4.92 | 0.025 | 0.00 | 60.0 | -7.41 | 0.58 | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 128 | 184 | $0.400 \ 0.06 \ 0.$ | 0 - 4.44 | 0.400 | 0.02 | 25.0 | 4.88 | 0.000 | 0.00 | 0.0 | -6.32 | 0.44 | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 129 | 185 | $0.400 \ 0.06 \ 0.$ | 0 4.21 | 0.425 | 0.04 | 20.0 | 4.64 | 0.025 | 0.00 | 47.5 | -5.36 | 0.43 | | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | 130 | 186 | $0.425 \ 0.08 \ 0.$ | 0 - 4.16 | 0.400 | 0.04 | 20.0 | 4.74 | 0.000 | 0.00 | 0.0 | -4.10 | 0.57 | | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | 131 | 187 | $0.425 \ 0.08 \ 0.$ | 0 - 3.88 | 0.425 | 0.06 | 17.5 | 4.56 | 0.375 | 0.02 | 52.5 | 2.28 | 0.69 | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | $0.425 \ 0.08 \ 0.$ | 0 - 3.88 | 0.425 | 0.06 | 17.5 | 4.56 | 0.075 | -0.04 | 0.0 | -3.37 | 0.69 | | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | | | $0.375 \ 0.02 \ 52.$ | 5 2.28 | 0.300 | -0.02 | 47.5 | 2.65 | 0.075 | -0.04 | 0.0 | -3.37 | 0.37 | | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | 132 | 188 | $0.425 \ 0.08 \ 0.$ | 0 3.94 | 0.375 | 0.02 | 17.5 | 4.55 | 0.375 | 0.02 | 52.5 | 2.42 | 0.61 | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | $0.425 \ 0.08 \ 0.$ | 0 3.94 | 0.375 | 0.02 | 17.5 | 4.55 | 0.100 | -0.04 | 0.0 | -2.53 | 0.61 | | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $ | | | $0.375 \ 0.02 \ 52.$ | 5 2.42 | 0.300 | -0.02 | 47.5 | 2.93 | | -0.04 | 0.0 | -2.53 | 0.50 | | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $ | 133 | 189 | $0.425 \ 0.08 \ 0.$ | 0 - 3.68 | 0.375 | 0.04 | 17.5 | 4.27 | | | 52.5 | 2.25 | 0.59 | | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $ | | | | | 0.375 | 0.04 | 17.5 | 4.27 | | | 0.0 | -2.13 | 0.59 | | 53 110 0.425 0.06 5.06 0.375 0.02 47.5 3.98 0.175 -0.04 5.0 -0.63 0.23 78 135 0.425 0.04 0.0 5.96 0.375 0.04 0.0 6.19 0.125 0.02 27.5 -0.72 0.22 79 136 0.425 0.04 0.0 5.87 0.375 0.02 0.0 6.47 0.050 0.00 15.0 -2.73 0.61 81 138 0.425 0.04 0.0 5.86 0.375 0.02 0.0 6.45 0.050 0.00 0.0 -2.73 0.61 81 138 0.425 0.04 0.0 5.86 0.375 0.02 0.0 6.45 0.050 0.00 0.0 -3.94 0.59 82 139 0.425 0.04 0.0 6.06 0.375 0.02 2.5 6.49 0.000 0.0 0.5 2.8 0. | | | $0.375 \ 0.02 \ 52.$ | 5 2.25 | 0.300 | -0.02 | 45.0 | 2.99 | 0.125 | -0.06 | 0.0 | -2.13 | 0.74 | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | Z | 7 = 57 | ' (La) | | | | | | | | | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 53 | 110 | 0.425 0.06 50. | 0 3.76 | 0.375 | 0.02 | 47.5 | 3.98 | 0.175 | -0.04 | 5.0 | -0.63 | 0.23 | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 78 | 135 | $0.425 \ 0.06 \ 0.$ | 0 - 5.96 | 0.375 | 0.04 | 0.0 | 6.19 | 0.125 | 0.02 | 27.5 | -0.72 | 0.22 | | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $ | 79 | 136 | $0.425 \ 0.04 \ 0.$ | 0 - 5.80 | 0.375 | 0.04 | 0.0 | 6.34 | 0.125 | 0.02 | 30.0 | -1.59 | 0.54 | | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $ | 80 | 137 | $0.425 \ 0.04 \ 0.$ | 0 - 5.87 | 0.375 | 0.02 | 0.0 | 6.47 | 0.050 | 0.00 | 15.0 | -2.73 | 0.61 | | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | 81 | 138 | $0.425 \ 0.04 \ 0.$ | 0 - 5.86 | 0.375 | 0.02 | 0.0 | 6.45 | 0.425 | 0.04 | 60.0 | 4.23 | 0.59 | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | $0.425 \ 0.04 \ 0.$ | 0 - 5.86 | 0.375 | 0.02 | 0.0 | 6.45 | 0.050 | 0.00 | 0.0 | -3.94 | 0.59 | | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $ | | | $0.425 \ 0.04 \ 60.$ | 0 - 4.23 | 0.350 | 0.02 | 60.0 | 4.52 | 0.050 | 0.00 | 0.0 | -3.94 | 0.29 | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 82 | 139 | $0.425 \ 0.04 \ 0.$ | 0 - 6.06 | 0.375 | 0.02 | -2.5 | 6.49 | 0.425 | 0.04 | 60.0 | 4.45 | 0.42 | | 83 140 0.425 0.04 0.0 6.15 0.375 0.02 2.5 6.38 0.425 0.04 52.5 4.57 0.23 0.425 0.04 50.0 50.0 50.0 6.15 0.375 0.02 2.5 6.38 0.050 -0.02 0.0 -4.35 0.23 104 161 0.400 0.06 47.5 4.39 0.350 0.02 42.5 4.63 0.250 0.02 0.0 0.54 0.24 117 174 0.375 0.02 5.0 4.67 0.350 0.02 0.0 -2.5 5.06 0.150 0.04 0.0 -0.81 0.39 118 175 0.375 0.00 5.0 4.67 0.350 0.02 0.0 5.09 0.02 0.0 5.09 0.125 0.04 0.0 -0.81 0.39 119 176 0.375 0.00 5.0 4.65 0.350 0.02 0.0 5.09 0.02 0.0 5.09 0.100 0.04 0.0 -1.63 0.69 120 177 0.375 0.02 2.5 4.43 0.325 0.02 0.0 5.09 0.0 5.09 0.100 0.04 0.0 -1.63 0.69 121 178 0.375 0.02 0.0 4.24 0.300
0.02 0.0 5.09 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 | | | $0.425 \ 0.04 \ 0.$ | 0 - 6.06 | 0.375 | 0.02 | -2.5 | 6.49 | 0.000 | 0.00 | 0.0 | -5.28 | 0.42 | | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | | | $0.425 \ 0.04 \ 60.$ | 0 4.45 | 0.375 | 0.02 | 60.0 | 4.72 | 0.000 | 0.00 | 0.0 | -5.28 | 0.28 | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 83 | 140 | $0.425 \ 0.04 \ 0.$ | 0 - 6.15 | 0.375 | 0.02 | 2.5 | 6.38 | 0.425 | 0.04 | 52.5 | 4.57 | 0.23 | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | $0.425 \ 0.04 \ 0.$ | 0 - 6.15 | 0.375 | 0.02 | 2.5 | 6.38 | 0.050 | -0.02 | 0.0 | -4.35 | 0.23 | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | $0.425 \ 0.04 \ 52.$ | 5 4.57 | 0.375 | 0.02 | 55.0 | 4.84 | 0.050 | -0.02 | 0.0 | -4.35 | 0.27 | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 104 | 161 | $0.400 \ 0.06 \ 47.$ | 5 4.39 | 0.350 | 0.02 | 42.5 | 4.63 | 0.250 | 0.02 | 0.0 | 0.54 | 0.24 | | 119 176 0.375 0.00 5.0 4.40 0.325 0.02 0.0 5.09 0.100 0.04 0.0 -1.63 0.69 120 177 0.375 0.02 2.5 4.43 0.325 0.02 0.0 5.20 0.100 0.04 0.0 -1.98 0.77 121 178 0.375 0.02 0.0 4.24 0.300 0.02 0.0 5.15 0.100 0.04 30.0 -2.95 0.90 122 179 0.375 0.02 0.0 4.32 0.300 0.00 0.0 5.28 0.100 0.02 30.0 -3.46 0.96 123 180 0.375 0.02 0.0 4.30 0.300 -0.02 0.0 5.24 0.075 0.02 57.5 -4.69 1.05 124 181 0.375 0.02 0.0 4.30 0.300 -0.02 0.0 5.25 0.050 0.02 60.0 | 117 | 174 | $0.375 \ 0.02 \ 5.$ | 0 - 4.67 | 0.350 | 0.00 | -2.5 | 5.06 | 0.150 | 0.04 | 0.0 | -0.81 | 0.39 | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 118 | 175 | $0.375 \ 0.00 \ 5.$ | 0 4.65 | 0.350 | 0.02 | 0.0 | 5.09 | 0.125 | 0.04 | 0.0 | -1.00 | 0.45 | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 119 | 176 | $0.375 \ 0.00 \ 5.$ | 0 - 4.40 | 0.325 | 0.02 | 0.0 | 5.09 | 0.100 | 0.04 | 0.0 | -1.63 | 0.69 | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 120 | 177 | $0.375 \ 0.02 \ 2.$ | 5 4.43 | 0.325 | 0.02 | 0.0 | 5.20 | 0.100 | 0.04 | 0.0 | -1.98 | 0.77 | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 121 | 178 | $0.375 \ 0.02 \ 0.$ | | 0.300 | 0.02 | 0.0 | | 0.100 | | | | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | | | | | 0.0 | | | | | | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | | | | | 0.0 | | | | | | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | | | | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | | | | | 0.0 | | | | | | | | 128 185 0.400 0.06 0.0 4.08 0.325 0.00 0.0 4.99 0.000 0.00 0.0 0.0 0.0 -5.84 0.91 129 186 0.400 0.06 0.0 3.84 0.425 0.04 22.5 4.82 0.025 0.00 60.0 -4.87 0.98 130 187 0.400 0.06 0.0 3.85 0.400 0.04 22.5 4.88 0.025 0.00 2.5 -3.61 1.02 131 188 0.425 0.08 0.0 3.60 0.375 0.02 20.0 4.61 0.075 -0.02 0.0 -2.81 1.01 132 189 0.425 0.08 0.0 3.65 0.375 0.02 20.0 4.54 0.375 0.02 52.5 2.54 0.89 0.425 0.08 0.0 3.65 0.375 0.02 20.0 4.54 0.100 -0.04 0.0 -2.01 0.89 0.375 0.02 52.5 2.54 0.300 -0.02 47.5 2.90 0.100 -0.04 0.0 -2.01 0.36 133 190 0.425 0.08 0.0 3.40 0.375 0.02 20.0 4.24 0.375 0.02 52.5 2.37 0.84 | | | | | | | | | | | | | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | | | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | | | | | | 131 188 0.425 0.08 0.0 3.60 0.375 0.02 20.0 4.61 0.075 -0.02 0.0 -2.81 1.01 132 189 0.425 0.08 0.0 3.65 0.375 0.02 20.0 4.54 0.375 0.02 52.5 2.54 0.89 0.425 0.08 0.0 3.65 0.375 0.02 20.0 4.54 0.100 -0.04 0.0 -2.01 0.89 0.375 0.02 52.5 2.54 0.300 -0.02 47.5 2.90 0.100 -0.04 0.0 -2.01 0.36 133 190 0.425 0.08 0.0 3.40 0.375 0.02 20.0 4.24 0.375 0.02 52.5 2.37 0.84 | | | | | | | | | | | | | | | 132 189 0.425 0.08 0.0 3.65 0.375 0.02 20.0 4.54 0.375 0.02 52.5 2.54 0.89 0.425 0.08 0.0 3.65 0.375 0.02 20.0 4.54 0.100 -0.04 0.0 -2.01 0.89 0.375 0.02 52.5 2.54 0.300 -0.02 47.5 2.90 0.100 -0.04 0.0 -2.01 0.36 133 190 0.425 0.08 0.0 3.40 0.375 0.02 20.0 4.24 0.375 0.02 52.5 2.37 0.84 | | | | | | | | | | | | | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | | | | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 132 | 189 | | | | | | | | | | | | | 133 190 0.425 0.08 0.0 3.40 0.375 0.02 20.0 4.24 0.375 0.02 52.5 2.37 0.84 | 133 | 190 | | | | | | | | | | | | | | | | 0.425 0.08 0. | 0 3.40 | 0.375 | 0.02 | 20.0 | 4.24 | 0.125 | -0.06 | 0.0 | -1.60 | 0.84 | Table (continued) | Nucleus | | Minim | um | | | Sad | ldle | | | Mini | mum | | S.H. | |-------------|------------------|--------------|----------|---------------------|--------------|--------------|----------|---------------------|--------------|--------------|----------|-------|---------------| | N A | ϵ_2 | ϵ_4 | γ | E | ϵ_2 | ϵ_4 | γ | E | ϵ_2 | ϵ_4 | γ | E | $E_{\rm sad}$ | | | | | (] | MeV) | | | | (MeV) | | | | (MeV) | (MeV) | | Z=57 | ` ' | | | | | | | | | | | | | | $133 \ 190$ | 0.375 | 0.02 5 | | 2.37 | 0.300 | -0.02 | | 2.99 | 0.125 | -0.06 | 0.0 | -1.60 | 0.62 | | 134 191 | 0.400 | | 0.0 | 3.50 | 0.350 | 0.02 | | 4.36 | 0.375 | | 50.0 | 2.58 | 0.87 | | | 0.400 | | 0.0 | 3.50 | 0.350 | | 15.0 | 4.36 | | -0.08 | 0.0 | -1.11 | 0.87 | | | 0.375 | 0.02 5 | | 2.58 | 0.325 | 0.00 | | 3.27 | | -0.08 | 0.0 | -1.11 | 0.70 | | $135 \ 192$ | 0.400 | | 0.0 | 3.27 | 0.350 | | 15.0 | 4.04 | 0.375 | | 47.5 | 2.49 | 0.78 | | | 0.400 | | 0.0 | 3.27 | 0.350 | | 15.0 | 4.04 | | -0.08 | 0.0 | -1.32 | 0.78 | | | 0.375 | 0.04 4 | 7.5 | 2.49 | 0.300 | -0.02 | 40.0 | 3.11 | 0.150 | -0.08 | 0.0 | -1.32 | 0.62 | | Z=58 | ` ' | | | | | | | | | | | | | | 79 137 | 0.425 | | 0.0 | 5.40 | 0.375 | 0.04 | 0.0 | 5.69 | 0.125 | | 30.0 | -1.02 | 0.29 | | 80 138 | 0.425 | | 0.0 | 5.46 | 0.375 | 0.02 | 0.0 | 5.79 | 0.050 | | 15.0 | -2.08 | 0.33 | | 81 139 | 0.425 | | 0.0 | 5.47 | 0.375 | 0.02 | 0.0 | 5.77 | 0.425 | | 60.0 | 4.23 | 0.30 | | | 0.425 | | 0.0 | 5.47 | 0.375 | 0.02 | 0.0 | 5.77 | 0.050 | 0.00 | 0.0 | -3.28 | 0.30 | | | 0.425 | 0.04 6 | | 4.23 | 0.350 | | 60.0 | 4.67 | 0.050 | 0.00 | 0.0 | -3.28 | 0.45 | | 82 140 | 0.425 | 0.04 6 | | 4.46 | 0.375 | | 60.0 | 4.83 | 0.000 | 0.00 | 0.0 | -4.64 | 0.37 | | 83 141 | 0.425 | 0.04 5 | | 4.68 | 0.375 | 0.02 | | 5.00 | 0.025 | | 57.5 | -3.70 | 0.32 | | 84 142 | 0.425 | 0.04 5 | | 5.01 | 0.375 | | 60.0 | 5.22 | 0.050 | | 15.0 | -2.54 | 0.21 | | 117 175 | 0.375 | | 0.0 | 4.36 | 0.350 | 0.02 | 0.0 | 4.64 | 0.150 | 0.04 | 0.0 | -0.46 | 0.28 | | 118 176 | 0.375 | | 0.0 | 4.32 | 0.325 | 0.02 | 0.0 | 4.76 | 0.150 | 0.06 | 0.0 | -0.61 | 0.44 | | 119 177 | 0.375 | | 0.0 | 4.10 | 0.325 | 0.02 | 0.0 | 4.79 | 0.125 | 0.04 | 0.0 | -1.16 | 0.69 | | 120 178 | 0.375 | | 0.0 | 4.13 | 0.325 | 0.00 | 0.0 | 4.91 | 0.100 | 0.04 | 7.5 | -1.46 | 0.78 | | 121 179 | 0.375 | | 0.0 | 3.97 | 0.300 | 0.02 | 0.0 | 4.93 | 0.100 | | 27.5 | -2.39 | 0.96 | | 122 180 | 0.375 | | 0.0 | 4.06 | 0.300 | 0.00 | 0.0 | 5.01 | 0.100 | | 30.0 | -2.88 | 0.96 | | 123 181 | 0.375 | | 0.0 | 3.93 | 0.300 | | 0.0 | 4.98 | 0.075 | | 52.5 | -4.10 | 1.04 | | 124 182 | 0.375 | | 0.0 | 4.05 | | -0.02 | 0.0 | 4.95 | 0.050 | | 60.0 | -4.99 | 0.89 | | 125 183 | 0.375 | | 0.0 | 3.93 | | -0.02 | 0.0 | 4.80 | 0.000 | 0.00 | 0.0 | -6.49 | 0.88 | | 126 184 | 0.375 | | 0.0 | 4.06 | | -0.02 | 0.0 | 4.75 | 0.000 | 0.00 | 0.0 | -7.19 | 0.69 | | 127 185 | 0.375 | | 0.0 | 3.97 | | -0.02 | 0.0 | 4.57 | 0.000 | 0.00 | 0.0 | -6.32 | 0.60 | | 128 186 | 0.375 | | 0.0 | 3.99 | 0.325 | 0.00 | 0.0 | 4.65 | 0.000 | 0.00 | 0.0 | -5.26 | 0.66 | | 129 187 | 0.375 | | 0.0 | 3.78 | 0.325 | 0.00 | 0.0 | 4.52 | 0.025 | 0.00 | | -4.23 | 0.74 | | 130 188 | 0.375 | | 0.0 | 3.83 | 0.325 | 0.00 | 0.0 | 4.52 | 0.000 | 0.00 | 0.0 | -3.01 | 0.69 | | 131 189 | 0.375 | | 0.0 | 3.60 | 0.325 | 0.00 | 0.0 | 4.36 | 0.075 | -0.02 | 0.0 | -2.12 | 0.76 | | $132 \ 190$ | 0.375 | | 0.0 | 3.65 | 0.350 | 0.02 | 0.0 | 4.43 | 0.375 | | 55.0 | 2.92 | 0.78 | | | 0.375 | | 0.0 | 3.65 | 0.350 | 0.02 | 0.0 | 4.43 | | -0.04 | 0.0 | -1.34 | 0.78 | | 100 101 | 0.375 | 0.02 5 | | 2.92 | 0.325 | | 50.0 | 3.19 | | | | -1.34 | 0.27 | | 133 191 | 0.375 | | 0.0 | 3.40 | 0.350 | 0.04 | 0.0 | 4.28 | 0.375 | | 52.5 | 2.76 | 0.87 | | | 0.375 | | 0.0 | $\frac{3.40}{2.76}$ | 0.350 | 0.04 | | 4.28 | | -0.06 | 2.5 | -0.89 | 0.87 | | 194 100 | 0.375 | 0.02 5 | | 2.76 | 0.325 | | 45.0 | 3.29 | | -0.06 | | -0.89 | 0.53 | | $134 \ 192$ | 0.375 | | 0.0 | $\frac{3.45}{2.45}$ | 0.350 | 0.04 | 0.0 | 4.26 | 0.375 | | 52.5 | 2.93 | 0.81 | | | 0.375 | | 0.0 | 3.45 | 0.350 | 0.04 | 0.0 | 4.26 | | -0.08 | 0.0 | -0.56 | 0.81 | | 125 102 | 0.375 | 0.02 5 | | 2.93 | 0.325 | | 45.0 | 3.53 | | -0.08 | 0.0 | -0.56 | 0.60 | | $135 \ 193$ | 0.375 | | 0.0 | 3.22 | 0.350 | 0.04 | 0.0 | 4.03 | 0.375 | | 47.5 | 2.94 | 0.82 | | | 0.375 | | 0.0 | 3.22 | 0.350 | 0.04 | 0.0 | 4.03 | | -0.08 | 0.0 | -0.79 | 0.82 | | 196 104 | 0.375 | 0.04 4 | | 2.94 | 0.325 | | 40.0 | 3.48 | | -0.08 | 0.0 | -0.79 | 0.55 | | 136 194 | 0.375 | | 0.0 | $\frac{3.37}{2.27}$ | 0.350 | 0.04 | 0.0 | 4.04 | 0.375 | | 45.0 | 3.05 | 0.66 | | | 0.375 | | 0.0 | $\frac{3.37}{3.05}$ | 0.350 | 0.04 | | 4.04 | | -0.10 | 0.0 | -0.80 | 0.66 | | 197 105 | $0.375 \\ 0.375$ | 0.04 4 | | $3.05 \\ 3.30$ | 0.325 | | 37.5 | $\frac{3.55}{3.81}$ | | -0.10 | 0.0 | -0.80 | 0.50 | | 137 195 | | 0.06 | 0.0 | ა.ა∪ | 0.350 | 0.04 | 0.0 | 3.81 | 0.175 | -0.10 | 0.0 | -1.19 | 0.51 | | Z = 59 | ` ' | 0.00 | | 9.00 | 0.075 | 0.04 | 45 5 | 0.50 | 0.055 | 0.04 | 0.0 | 0.00 | 0.00 | | 60 119 | | -0.06 5 | | 3.29 | | -0.04 | | 3.56 | | | | -0.23 | 0.26 | | 61 120 | 0.275 | -0.06 5 | 6.10 | 3.64 | 0.275 | -0.04 | 41.5 | 3.89 | 0.275 | -0.04 | 0.0 | -0.06 | 0.25 | Table (continued) | Nuc | leus | | Minii | num | | | Sad | ldle | | | Mini | mum | | S.H. | |-----|------|--------------|--------------|----------|-------|--------------|--------------|----------|-------|--------------|--------------|----------|-------|---| | N | A |
ϵ_2 | ϵ_4 | γ | E | ϵ_2 | ϵ_4 | γ | E | ϵ_2 | ϵ_4 | γ | E | $E_{\rm sad}$ | | | | | | | (MeV) | | | | (MeV) | | | | (MeV) | (MeV) | | | | 9 (Pr) | | | | | | | | | | | | | | 62 | 121 | 0.275 | -0.04 | 57.5 | 3.79 | 0.275 | -0.04 | 47.5 | 4.03 | 0.300 | -0.02 | 0.0 | 0.14 | 0.24 | | 79 | 138 | 0.425 | 0.04 | 0.0 | 4.87 | 0.375 | 0.04 | 0.0 | 5.14 | 0.125 | 0.02 | 17.5 | -0.52 | 0.28 | | 80 | 139 | 0.425 | 0.04 | 0.0 | 4.93 | 0.375 | 0.02 | 0.0 | 5.26 | 0.425 | 0.04 | 60.0 | 4.13 | 0.33 | | | | 0.425 | 0.04 | 0.0 | 4.93 | 0.375 | 0.02 | 0.0 | 5.26 | 0.075 | 0.02 | 0.0 | -1.47 | 0.33 | | | | 0.425 | 0.04 | 60.0 | 4.13 | 0.350 | 0.02 | 60.0 | 4.41 | 0.075 | 0.02 | 0.0 | -1.47 | 0.28 | | 81 | 140 | 0.425 | 0.04 | 0.0 | 4.94 | 0.375 | 0.02 | 0.0 | 5.26 | 0.425 | 0.04 | 60.0 | 4.00 | 0.31 | | | | 0.425 | 0.04 | 0.0 | 4.94 | 0.375 | 0.02 | 0.0 | 5.26 | 0.050 | 0.00 | 2.5 | -2.65 | 0.31 | | | | 0.425 | 0.04 | 60.0 | 4.00 | 0.350 | 0.02 | 60.0 | 4.58 | 0.050 | 0.00 | 2.5 | -2.65 | 0.57 | | 82 | 141 | 0.425 | 0.04 | 60.0 | 4.21 | 0.375 | 0.02 | 60.0 | 4.72 | 0.000 | 0.00 | 0.0 | -4.01 | 0.51 | | 95 | 154 | 0.375 | 0.02 | 60.0 | 5.56 | 0.350 | 0.02 | 55.0 | 5.81 | 0.250 | -0.06 | 0.0 | -0.47 | 0.24 | | 96 | 155 | 0.375 | 0.02 | 60.0 | 5.66 | 0.375 | 0.04 | 52.5 | 5.93 | 0.250 | -0.04 | 0.0 | -0.25 | 0.27 | | 97 | 156 | 0.400 | 0.04 | 60.0 | 5.56 | 0.375 | 0.04 | 52.5 | 5.79 | 0.250 | -0.04 | 0.0 | -0.41 | 0.22 | | 106 | 165 | 0.400 | 0.08 | 60.0 | 4.92 | 0.350 | 0.04 | 60.0 | 5.21 | 0.250 | 0.02 | 0.0 | 0.28 | 0.29 | | 117 | 176 | 0.375 | 0.02 | 0.0 | 4.05 | 0.350 | 0.02 | 0.0 | 4.28 | 0.150 | 0.06 | 0.0 | -0.23 | 0.23 | | 118 | 177 | 0.375 | 0.02 | 0.0 | 4.03 | 0.325 | 0.02 | 0.0 | 4.40 | 0.150 | 0.06 | 0.0 | -0.38 | 0.37 | | 119 | 178 | 0.375 | 0.02 | 0.0 | 3.81 | 0.300 | 0.02 | 0.0 | 4.43 | 0.125 | 0.04 | 0.0 | -0.82 | 0.62 | | 120 | 179 | 0.375 | 0.02 | 0.0 | 3.84 | 0.300 | 0.02 | 0.0 | 4.60 | 0.150 | 0.02 | 60.0 | -1.00 | 0.76 | | | | 0.375 | 0.02 | 0.0 | 3.84 | 0.300 | 0.02 | 0.0 | 4.60 | 0.100 | 0.04 | 7.5 | -1.09 | 0.76 | | | | 0.150 | 0.02 | 60.0 | -1.00 | 0.125 | 0.04 | 37.5 | -0.79 | 0.100 | 0.04 | 7.5 | -1.09 | 0.20 | | 121 | 180 | 0.375 | 0.02 | 0.0 | 3.70 | 0.300 | 0.02 | 0.0 | 4.66 | 0.100 | 0.04 | 27.5 | -2.01 | 0.96 | | | 181 | 0.375 | 0.02 | 0.0 | 3.79 | 0.300 | 0.00 | 0.0 | 4.70 | 0.100 | 0.02 | 30.0 | -2.50 | 0.91 | | 123 | 182 | 0.375 | 0.02 | 0.0 | 3.68 | 0.300 | 0.00 | 0.0 | 4.67 | 0.075 | 0.02 | 52.5 | -3.75 | 0.99 | | | 183 | 0.375 | 0.02 | 0.0 | 3.80 | 0.300 | -0.02 | 0.0 | 4.65 | 0.050 | 0.02 | 60.0 | -4.62 | 0.86 | | | 184 | 0.375 | 0.02 | 0.0 | 3.68 | 0.300 | -0.02 | 0.0 | 4.51 | 0.000 | 0.00 | 0.0 | -6.03 | 0.83 | | 126 | 185 | 0.375 | 0.02 | 0.0 | 3.81 | 0.300 | -0.02 | 0.0 | 4.46 | 0.000 | 0.00 | 0.0 | -6.71 | 0.64 | | 127 | 186 | 0.375 | 0.04 | 0.0 | 3.66 | 0.300 | -0.02 | 0.0 | 4.28 | 0.025 | 0.00 | 57.5 | -5.88 | 0.61 | | 128 | 187 | 0.375 | 0.04 | 0.0 | 3.71 | 0.300 | -0.02 | 0.0 | 4.21 | 0.000 | 0.00 | 0.0 | -4.76 | 0.50 | | 129 | 188 | 0.375 | 0.04 | 0.0 | 3.51 | 0.325 | 0.00 | 0.0 | 4.15 | 0.025 | 0.00 | 55.0 | -3.79 | 0.64 | | 130 | 189 | 0.375 | 0.04 | 0.0 | 3.55 | 0.350 | 0.02 | 0.0 | 4.24 | 0.025 | 0.00 | 2.5 | -2.50 | 0.68 | | 131 | 190 | 0.375 | 0.04 | 0.0 | 3.33 | 0.350 | 0.02 | 0.0 | 4.07 | 0.075 | -0.02 | 0.0 | -1.67 | 0.74 | | 132 | 191 | 0.375 | 0.06 | 0.0 | 3.39 | 0.350 | 0.02 | 0.0 | 4.10 | 0.100 | -0.06 | 0.0 | -0.89 | 0.71 | | 133 | 192 | 0.375 | 0.02 | 55.0 | 2.88 | 0.350 | 0.02 | 0.0 | 3.94 | 0.375 | 0.06 | 0.0 | 3.11 | 0.82 | | | | 0.375 | 0.02 | 55.0 | 2.88 | 0.325 | -0.02 | 50.0 | 3.34 | 0.125 | -0.06 | 0.0 | -0.61 | 0.46 | | | | 0.375 | 0.06 | 0.0 | 3.11 | 0.350 | 0.02 | 0.0 | 3.94 | 0.125 | -0.06 | 0.0 | -0.61 | 0.82 | | 134 | 193 | 0.375 | 0.02 | 55.0 | 3.04 | 0.350 | 0.04 | 0.0 | 3.95 | 0.375 | 0.06 | 0.0 | 3.16 | 0.79 | | | | 0.375 | 0.02 | 55.0 | 3.04 | 0.350 | 0.02 | 47.5 | 3.63 | 0.150 | -0.08 | 0.0 | -0.27 | 0.59 | | | | 0.375 | 0.06 | 0.0 | 3.16 | 0.350 | 0.04 | 0.0 | 3.95 | 0.150 | -0.08 | 0.0 | -0.27 | 0.79 | | 135 | 194 | 0.375 | 0.02 | 60.0 | 2.81 | 0.350 | 0.04 | 0.0 | 3.73 | 0.375 | 0.06 | 0.0 | 2.93 | 0.79 | | | | 0.375 | 0.02 | 60.0 | 2.81 | 0.350 | 0.02 | 42.5 | 3.56 | | -0.08 | 0.0 | -0.66 | 0.75 | | | | 0.375 | 0.06 | 0.0 | 2.93 | 0.350 | 0.04 | 0.0 | 3.73 | 0.175 | -0.08 | 0.0 | -0.66 | 0.79 | | 136 | 195 | 0.375 | 0.02 | 60.0 | 2.94 | 0.350 | 0.04 | 0.0 | 3.73 | 0.375 | 0.06 | 0.0 | 3.08 | 0.65 | | | | 0.375 | 0.02 | 60.0 | 2.94 | 0.375 | 0.04 | 47.5 | 3.35 | 0.175 | -0.10 | 0.0 | -0.65 | 0.41 | | | | 0.375 | 0.06 | 0.0 | 3.08 | 0.350 | 0.04 | 0.0 | 3.73 | | -0.10 | 0.0 | -0.65 | 0.65 | | 137 | 196 | 0.400 | 0.02 | | 2.70 | 0.350 | 0.04 | | 3.52 | 0.375 | 0.06 | 0.0 | 3.02 | 0.50 | | | | 0.400 | 0.02 | | 2.70 | 0.400 | | 55.0 | 2.92 | | -0.10 | 0.0 | -1.05 | 0.23 | | | | 0.375 | 0.06 | 0.0 | 3.02 | 0.350 | 0.04 | | 3.52 | | -0.10 | 0.0 | -1.05 | 0.50 | | 138 | 197 | 0.400 | 0.04 | | 2.78 | 0.350 | 0.04 | | 3.54 | 0.375 | 0.06 | 0.0 | 3.22 | 0.32 | | | • | 0.400 | 0.04 | | 2.78 | 0.400 | | 55.0 | 3.00 | | -0.08 | 0.0 | -0.99 | 0.22 | | | | 0.375 | 0.06 | | 3.22 | 0.350 | | 0.0 | 3.54 | | -0.08 | 0.0 | -0.99 | 0.32 | | 139 | 198 | 0.400 | 0.04 | | 2.49 | 0.400 | | 55.0 | 2.75 | | -0.08 | 0.0 | -1.36 | 0.26 | | | | | | | | 0 | | | | | | | | -t ==================================== | Table (continued) | Nucleus | Mini | mum | | | Sad | dle | | | Mini | mum | | S.H. | |-------------|---------------------------|----------|----------------|--------------|--------------|----------|---------------------|--------------|--------------|----------|-------|---------------| | N A | ϵ_2 ϵ_4 | γ | \overline{E} | ϵ_2 | ϵ_4 | γ | \overline{E} | ϵ_2 | ϵ_4 | γ | E | $E_{\rm sad}$ | | | | | ${ m feV})$ | | | | (MeV) | | | | (MeV) | (MeV) | | Z = | 60 (Nd) | | | | | | | | | | | | | 60 120 | 0.275 -0.06 | 60.0 | 3.35 0. | .275 | -0.04 | 45.0 | 3.76 | 0.300 | -0.04 | 0.0 | -0.63 | 0.40 | | 61 121 | 0.300 -0.04 | 60.0 | 3.67 0. | .275 | -0.04 | 47.5 | 4.09 | 0.300 | -0.04 | 0.0 | -0.49 | 0.42 | | $62 \ 122$ | 0.300 -0.04 | 60.0 | 3.88 0. | .275 | -0.04 | 45.0 | 4.25 | 0.300 | -0.02 | 0.0 | -0.34 | 0.37 | | $63 \ 123$ | 0.275 -0.04 | 60.0 | 4.22 0. | .275 | -0.04 | 47.5 | 4.44 | 0.300 | -0.02 | 0.0 | -0.14 | 0.21 | | 80 140 | 0.425 0.04 | 0.0 | 4.78 0. | .375 | 0.02 | 0.0 | 5.04 | 0.425 | 0.04 | 60.0 | 4.26 | 0.26 | | | 0.425 0.04 | 0.0 | 4.78 0. | .375 | 0.02 | 0.0 | 5.04 | 0.000 | 0.00 | 0.0 | -1.08 | 0.26 | | | 0.425 0.04 | | | .350 | 0.02 | 60.0 | 4.50 | 0.000 | 0.00 | 0.0 | -1.08 | 0.24 | | 81 141 | 0.425 0.04 | 0.0 | 4.79 0. | .375 | 0.02 | 0.0 | 5.03 | 0.425 | 0.04 | 60.0 | 4.13 | 0.24 | | | 0.425 0.04 | | | .375 | 0.02 | 0.0 | 5.03 | 0.050 | 0.00 | 0.0 | -2.25 | 0.24 | | | | | | .375 | 0.02 | | 4.59 | 0.050 | 0.00 | 0.0 | -2.25 | 0.46 | | $97 \ 157$ | | | | .325 | 0.00 | | 6.01 | 0.250 | -0.04 | 0.0 | -0.59 | 0.22 | | 106 166 | | | | .400 | 0.06 | | 5.38 | 0.250 | 0.02 | 0.0 | 0.11 | 0.21 | | 118 178 | | | | .350 | 0.00 | 0.0 | 4.20 | 0.150 | 0.06 | 0.0 | -0.20 | 0.23 | | $119 \ 179$ | | | | .325 | 0.02 | 0.0 | 4.24 | 0.125 | 0.04 | 0.0 | -0.51 | 0.47 | | 120 180 | | | | .325 | 0.00 | 0.0 | 4.32 | 0.150 | 0.02 | | -0.70 | 0.50 | | | 0.375 0.02 | | | .325 | 0.00 | 0.0 | 4.32 | 0.100 | 0.04 | 0.0 | -0.69 | 0.50 | | | 0.150 0.02 | | | .125 | 0.02 | | -0.44 | 0.100 | 0.04 | 0.0 | -0.69 | 0.25 | | 121 181 | | | | .300 | 0.00 | 0.0 | 4.39 | 0.100 | 0.04 | | -1.58 | 0.70 | | $122 \ 182$ | | | | .300 | 0.00 | 0.0 | 4.41 | 0.100 | 0.02 | | -2.08 | 0.61 | | $123 \ 183$ | | | | .300 | 0.00 | 0.0 | 4.37 | 0.075 | 0.02 | | -3.33 | 0.68 | | 124 184 | | | | | -0.02 | 0.0 | 4.35 | 0.050 | 0.02 | | -4.17 | 0.52 | | $125 \ 185$ | | | | | -0.02 | 0.0 | 4.17 | 0.000 | 0.00 | 0.0 | -5.63 | 0.46 | | 126 186 | | | | .350 | 0.00 | 0.0 | 4.31 | 0.000 | 0.00 | 0.0 | -6.29 | 0.46 | | 127 187 | | | | .350 | 0.02 | 0.0 | 4.19 | 0.000 | 0.00 | 0.0 | -5.39 | 0.42 | | 128 188 | | | | .350 | 0.02 | 0.0 | 4.25 | 0.000 | 0.00 | 0.0 | -4.33 | 0.48 | | 129 189 | | | | .350 | 0.02 | 0.0 | 4.12 | 0.025 | 0.00 | 57.5 | -3.28 | 0.55 | | 130 190 | | | | .350 | 0.02 | 0.0 | 4.15 | 0.000 | 0.00 | 0.0 | -2.05 | 0.53 | | 131 191 | | | | .350 | 0.02 | 0.0 | 3.98 | 0.075 | -0.04 | 0.0 | -1.17 | 0.59 | | 132 192 | | | | .350 | 0.02 | 0.0 | 4.02 | | -0.06 | 0.0 | -0.38 | 0.54 | | 133 193 | | | | .350 | 0.02 | 0.0 | 3.85 | 0.375 | 0.06 | 0.0 | 3.19 | 0.54 | | | | | | .350 | 0.00 | | 3.53 | 0.125 | -0.06 | 0.0 | -0.13 | 0.21 | | 104 104 | 0.375 0.06 | | | .350 | 0.02 | 0.0 | 3.85 | 0.125 | -0.06 | 0.0 | -0.13 | 0.65 | | 134 194 | | | | .325 | 0.00 | | 3.91 | 0.375 | 0.06 | 0.0 | 3.25 | 0.49 | | | | | | .325 | 0.00 | | 3.91 | | -0.08 | 0.0 | 0.18 | 0.49 | | 105 105 | 0.375 0.06 | | | .350 | 0.04 | | 3.87 | | -0.08 | 0.0 | 0.18 | 0.62 | | 135 195 | | | | .375 | 0.04 | | 3.68 | 0.375 | 0.06 | 0.0 | 3.02 | 0.44 | | | | | | .375 | 0.04 | | 3.68 | | -0.08 | 0.0 | -0.25 | 0.44 | | 100 100 | 0.375 0.06 | | | .350 | | 0.0 | 3.65 | | -0.08 | 0.0 | -0.25 | 0.63 | | 136 196 | | | | .375 | 0.04 | | $\frac{3.74}{2.74}$ | 0.375 | 0.06 | 0.0 | 3.18 | 0.37 | | | | | | .375 | 0.04 | | 3.74 | | -0.08 | 0.0 | -0.25 | 0.37 | | 107 107 | 0.375 0.06 | | | .350 | 0.04 | | 3.68 | | -0.08 | 0.0 | -0.25 | 0.50 | | 137 197 | | | | .375 | 0.04 | | 3.52 | 0.375 | 0.06 | 0.0 | 3.11 | 0.40 | | | | | | .375 | 0.04 | | 3.52 | | -0.08 | 0.0 | -0.63 | 0.40 | | 190 100 | 0.375 0.06 | | | .350 | 0.04 | | 3.46 | | -0.08 | 0.0 | -0.63 | 0.35 | | 138 198 | | | | .400 | 0.06 | | 3.56 | | -0.08 | 0.0 | -0.66 | 0.35 | | 139 199 | | | | .400 | 0.06 | | $\frac{3.25}{2.21}$ | | -0.08 | 0.0 | -1.04 | 0.34 | | 140 200 | | | | .400 | 0.06 | | 3.31 | | -0.08 | 0.0 | -0.92 | 0.33 | | 141 201 | | 60.0 | 2.68 0. | .400 | 0.06 | JU.U | 3.11 | 0.223 | -0.06 | 0.0 | -1.42 | 0.42 | | | 61 (Pm) | | 0.40 | 075 | 0.04
| 45.0 | 0.05 | 0.000 | 0.00 | 0.0 | 0.50 | 0.04 | | 59 120 | 0.300 -0.04 | 6.16 | 3.42 0. | .275 | -0.04 | 45.0 | 3.65 | 0.300 | -0.02 | 0.0 | -0.59 | 0.24 | Table (continued) | Nuc | eleus | | Mini | mum | | | Sad | ldle | | | Mini | mum | | S.H. | |----------------|--------|--------------|--------------|----------|-------|--------------|--------------|----------|----------------|--------------|--------------|----------|-------|---------------| | \overline{N} | A | ϵ_2 | ϵ_4 | γ | E | ϵ_2 | ϵ_4 | γ | \overline{E} | ϵ_2 | ϵ_4 | γ | E | $E_{\rm sad}$ | | | | | | | (MeV) | | | | (MeV) | | | | (MeV) | (MeV) | | Z | Z = 61 | (Pm) | | | | | | | | | | | | | | 60 | 121 | 0.300 | -0.04 | 60.0 | 3.38 | 0.300 | -0.04 | 45.0 | 3.88 | 0.300 | -0.04 | 0.0 | -0.84 | 0.50 | | 61 | 122 | 0.300 | -0.04 | 60.0 | 3.60 | 0.300 | -0.04 | 45.0 | 4.15 | 0.300 | -0.02 | 0.0 | -0.77 | 0.55 | | 62 | 123 | 0.300 | -0.04 | 60.0 | 3.82 | 0.300 | -0.04 | 45.0 | 4.34 | 0.300 | -0.02 | 0.0 | -0.65 | 0.53 | | 63 | 124 | 0.300 | -0.04 | 60.0 | 4.24 | 0.300 | -0.02 | 47.5 | 4.51 | 0.300 | -0.02 | 0.0 | -0.45 | 0.27 | | 81 | 142 | 0.425 | 0.04 | 60.0 | 4.23 | 0.375 | 0.02 | 60.0 | 4.56 | 0.050 | 0.02 | 0.0 | -1.79 | 0.33 | | 119 | 180 | 0.375 | 0.00 | 0.0 | 3.59 | 0.325 | 0.02 | 0.0 | 3.97 | 0.150 | 0.04 | 17.5 | -0.29 | 0.38 | | | 181 | 0.375 | 0.02 | 0.0 | 3.67 | 0.325 | 0.00 | 0.0 | 4.06 | 0.150 | 0.02 | | -0.56 | 0.38 | | 121 | 182 | 0.375 | 0.02 | 0.0 | 3.56 | 0.300 | 0.02 | 0.0 | 4.13 | 0.125 | 0.02 | 60.0 | -1.34 | 0.57 | | | 183 | 0.375 | 0.02 | 0.0 | 3.66 | 0.300 | 0.00 | 0.0 | 4.16 | 0.100 | 0.02 | | -1.80 | 0.50 | | 123 | 184 | 0.375 | 0.02 | 0.0 | 3.57 | 0.300 | 0.00 | 0.0 | 4.11 | 0.075 | 0.02 | 57.5 | -3.03 | 0.55 | | | 185 | 0.375 | 0.02 | 0.0 | 3.70 | 0.300 | 0.00 | 0.0 | 4.12 | 0.050 | 0.02 | 60.0 | -3.88 | 0.43 | | | 186 | 0.375 | 0.02 | 0.0 | 3.59 | 0.275 | -0.02 | 0.0 | 3.99 | 0.000 | 0.00 | 0.0 | -5.30 | 0.39 | | | 187 | 0.375 | 0.02 | 0.0 | 3.72 | 0.350 | 0.00 | 0.0 | 4.12 | 0.000 | 0.00 | 0.0 | -5.94 | 0.40 | | | 188 | 0.375 | 0.02 | 0.0 | 3.66 | 0.350 | 0.02 | 0.0 | 4.00 | 0.025 | 0.00 | 57.5 | -5.04 | 0.35 | | | 189 | 0.375 | 0.04 | 0.0 | 3.66 | 0.350 | 0.02 | 0.0 | 4.06 | 0.000 | 0.00 | 0.0 | -3.96 | 0.40 | | | | 0.375 | 0.04 | 0.0 | 3.46 | 0.350 | 0.02 | 0.0 | 3.93 | 0.025 | 0.00 | | -2.92 | 0.47 | | | 191 | 0.375 | 0.04 | 0.0 | 3.51 | 0.350 | 0.02 | 0.0 | 3.95 | 0.000 | 0.00 | 0.0 | -1.66 | 0.44 | | | 192 | 0.375 | 0.04 | 0.0 | 3.29 | 0.350 | 0.02 | 0.0 | 3.79 | 0.100 | | 0.0 | -0.86 | 0.50 | | | 193 | 0.375 | 0.06 | 0.0 | 3.37 | 0.350 | 0.02 | 0.0 | 3.82 | | -0.06 | 0.0 | -0.07 | 0.44 | | | 194 | 0.375 | 0.06 | 0.0 | 3.10 | 0.350 | 0.04 | 0.0 | 3.66 | | -0.06 | 0.0 | 0.14 | 0.56 | | | 195 | 0.375 | 0.06 | 0.0 | 3.15 | 0.350 | 0.04 | 0.0 | 3.65 | | -0.08 | 0.0 | 0.38 | 0.50 | | 135 | 196 | 0.375 | | | 3.55 | 0.375 | | 50.0 | 3.89 | 0.375 | 0.06 | 0.0 | 2.93 | 0.34 | | | | 0.375 | | | 3.55 | 0.375 | | 50.0 | 3.89 | | -0.08 | 0.0 | -0.07 | 0.34 | | | | 0.375 | 0.06 | 0.0 | 2.93 | 0.350 | 0.04 | 0.0 | 3.43 | 0.175 | -0.08 | 0.0 | -0.07 | 0.51 | | 136 | 197 | 0.375 | | 60.0 | 3.67 | 0.375 | | 50.0 | 4.05 | 0.375 | 0.06 | 0.0 | 3.08 | 0.38 | | | | 0.375 | 0.00 | | 3.67 | 0.375 | | 50.0 | 4.05 | 0.175 | -0.08 | 0.0 | -0.10 | 0.38 | | | | 0.375 | 0.06 | 0.0 | 3.08 | 0.350 | 0.04 | 0.0 | 3.46 | 0.175 | -0.08 | 0.0 | -0.10 | 0.38 | | 137 | 198 | 0.400 | | 60.0 | 3.47 | 0.400 | | 52.5 | 3.81 | 0.375 | 0.06 | 0.0 | 3.02 | 0.34 | | | | 0.400 | | | 3.47 | 0.400 | | 52.5 | 3.81 | 0.175 | | 0.0 | -0.48 | 0.34 | | | | 0.375 | 0.06 | 0.0 | 3.02 | 0.350 | 0.04 | 0.0 | 3.26 | | -0.08 | 0.0 | -0.48 | 0.24 | | | 199 | 0.400 | | 60.0 | 3.56 | 0.400 | | 52.5 | 3.88 | | -0.08 | 0.0 | -0.53 | 0.32 | | 139 | | 0.400 | | 60.0 | 3.28 | 0.400 | | 52.5 | 3.59 | | -0.08 | 0.0 | -0.92 | 0.31 | | 140 | | 0.400 | | 60.0 | 3.33 | 0.400 | | 52.5 | 3.63 | | -0.06 | 0.0 | -0.87 | 0.30 | | | 202 | 0.400 | | 60.0 | 3.06 | 0.400 | | 52.5 | 3.37 | | -0.06 | | -1.38 | 0.31 | | | 203 | 0.425 | | 60.0 | 3.04 | 0.400 | | 50.0 | | | -0.06 | 0.0 | | 0.50 | | | 204 | 0.425 | | 60.0 | 2.90 | 0.400 | | 50.0 | | | -0.06 | | -1.77 | 0.44 | | | 205 | 0.425 | 0.08 | 60.0 | 3.06 | 0.425 | 0.06 | 50.0 | 3.51 | 0.225 | -0.04 | 0.0 | -1.67 | 0.45 | | | | 2 (Sm) | | | | | | | | | | | | | | | 123 | | -0.04 | | 3.79 | | -0.04 | | 4.29 | | -0.02 | | -0.58 | 0.50 | | | 124 | | -0.04 | | 4.00 | | -0.04 | | 4.49 | | -0.02 | 0.0 | | 0.49 | | | 125 | | -0.04 | | 4.39 | | -0.02 | | 4.64 | 0.325 | 0.00 | 0.0 | -0.24 | 0.26 | | | 180 | 0.375 | 0.00 | | 3.77 | 0.350 | 0.02 | 0.0 | 3.99 | 0.150 | 0.06 | 0.0 | 0.06 | 0.22 | | 119 | 181 | 0.375 | 0.00 | 0.0 | 3.60 | 0.350 | 0.00 | 0.0 | 3.84 | 0.175 | | 55.0 | -0.17 | 0.24 | | | | 0.375 | 0.00 | | 3.60 | 0.350 | 0.00 | 0.0 | 3.84 | 0.150 | | 15.0 | | 0.24 | | 100 | 100 | 0.175 | | 55.0 | -0.17 | 0.150 | | 35.0 | | 0.150 | | | -0.16 | 0.29 | | | 182 | 0.375 | 0.00 | 0.0 | 3.72 | 0.325 | 0.02 | 0.0 | 4.07 | 0.175 | | | -0.51 | 0.34 | | | 183 | 0.375 | 0.02 | 0.0 | 3.65 | 0.325 | 0.00 | 0.0 | | 0.150 | | 60.0 | | 0.35 | | | 184 | 0.375 | 0.02 | 0.0 | 3.77 | 0.300 | 0.02 | 0.0 | | 0.100 | | | -1.55 | 0.41 | | | 185 | 0.375 | 0.02 | 0.0 | 3.67 | 0.300 | 0.00 | 0.0 | | 0.075 | | | -2.80 | 0.43 | | 124 | 186 | 0.375 | 0.02 | 0.0 | 3.81 | 0.300 | 0.00 | 0.0 | 4.11 | 0.050 | 0.02 | 0.00 | -3.58 | 0.30 | Table (continued) | N | Nuc | cleus | | Mini | mum | | | Sad | ldle | | | Mini | mum | | S.H. | |--|----------------|----------------|--------------|--------------|--------------|-------|--------------|--------------|----------|-------|--------------|--------------|----------|-------|---------------| | Z = 62 (Sm) | \overline{N} | \overline{A} | ϵ_2 | ϵ_4 | γ | E | ϵ_2 | ϵ_4 | γ | E | ϵ_2 | ϵ_4 | γ | | $E_{\rm sad}$ | | 125 187 | | | | | | (MeV) | | | | (MeV) | | | | (MeV) | (MeV) | | 126 188 0.375 0.02 0.0 3.85 0.350 0.02 0.0 4.14 0.000 0.00 0.0 5.61 0.30 127 189 0.375 0.02 0.0 3.86 0.350 0.02 0.0 4.09 0.000 0.00 0.0 0.0 3.57 0.23 129 191 0.375 0.04 0.0 3.66 0.350 0.02 0.0 3.98 0.000 0.00 0.0 5.75 -2.51 0.34 130 192 0.375 0.04 0.0 3.66 0.350 0.02 0.0 3.98 0.000 0.00 0.0 0.0 5.75 -2.51 0.34 131 193 0.375 0.04 0.0 3.56 0.350 0.02 0.0 3.80 0.100 -0.04 0.0 -0.51 0.37 132 194 0.375 0.04 0.0 3.50 0.350 0.02 0.0 3.84 0.100 -0.06 0.0 0.0 0.0 0.0 132 194 0.375 0.06 0.0 3.26 0.350 0.02 0.0 3.84 0.100 -0.06 0.0 0.0 0.0 134 195 0.375 0.06 0.0 3.26 0.350 0.04 0.0 3.66 0.125 -0.06 0.0 0.47 0.40 134 196 0.375 0.06 0.0 3.28 0.325 0.05 5.2 4.24 0.375 0.06 0.0 3.09 0.35 135 197 0.375 0.06 0.0 3.98 0.325 0.05 5.2 4.24 0.375 0.06 0.0 3.09 0.35 136 198 0.375 0.06 0.0 3.98 0.325 0.05 5.2 4.24 0.375 0.06 0.0 3.09 0.35 136 198 0.375 0.06 0.0 3.98 0.350 0.04 0.0 3.45 0.175 -0.08 0.0 0.36 0.26 137 199 0.375 0.06 0.0 3.98 0.350 0.04 0.0 3.45 0.175 -0.08 0.0 0.36 0.26 137 199 0.375 0.06 0.0 3.25 0.350 0.04 0.0 3.49 0.175 -0.08 0.0 0.32 0.28 137 199 0.375 0.06 0.0 3.25 0.350 0.04 0.0 3.49 0.175 -0.08 0.0 0.32 0.28 138 130 0.375 0.06 0.0 3.25 0.350 0.04 0.0 3.49 0.175 -0.08 0.0 0.32 0.28 138 0.375 0.06 0.0 3.25 0.350 0.04 0.0 3.49 0.175 -0.08 0.0 0.32 0.28 138 140 0.375 0.06 0.0 3.25 0.350 0.04 0.0 3.49 0.175 -0.08 0.0 0.32 0.28 137 190 0.375 0.06 0.0 3.54 0.06 0.0 0.05 0.0 0.0 0.05 0.0 0.0 0.0 0.0 0.0 0.0 0.0 | | | ` ' | | | | | | | | | | | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | | | | | | | | 128 190 | | | | | | | | | | | | | | | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | | | | | | | | 131 192 | | | | | | | | | | | | | | | | | 131 193 | | | | | | | | | | | | | | | | | $\begin{array}{c} 132 \ 194 0.375 0.04 0.0 3.50 0.350 0.02 0.0 3.84 0.100 -0.06 0.0 0.26 0.34 \\ 133 \ 195 0.375 0.06 0.0 3.26 0.350 0.04 0.0 3.66 0.150 -0.08 0.0 0.47 0.40 \\
134 \ 196 0.375 0.06 0.0 3.28 0.350 0.04 0.0 3.66 0.150 -0.08 0.0 0.78 0.35 \\ 135 \ 197 0.375 0.06 0.0 3.98 0.325 0.00 52.5 4.24 0.175 -0.08 0.0 0.36 0.26 \\ 0.375 0.06 0.0 3.09 0.350 0.04 0.0 3.45 0.175 -0.08 0.0 0.36 0.26 \\ 0.375 0.06 0.0 3.09 0.350 0.04 0.0 3.45 0.175 -0.08 0.0 0.36 0.26 \\ 0.375 0.06 0.0 3.09 0.350 0.04 5.0 4.39 0.175 -0.08 0.0 0.36 0.35 \\ 0.375 0.06 0.0 4.11 0.375 0.04 5.00 4.39 0.175 -0.08 0.0 0.32 0.28 \\ 0.375 0.06 0.0 3.25 0.350 0.04 5.0 4.39 0.175 -0.08 0.0 0.32 0.28 \\ 0.375 0.06 0.0 3.25 0.350 0.04 5.0 4.39 0.175 -0.08 0.0 0.32 0.28 \\ 137 199 0.375 0.06 0.0 3.25 0.350 0.04 5.0 4.39 0.175 -0.08 0.0 0.32 0.24 \\ 138 200 0.400 0.06 60.0 3.44 0.400 0.06 52.5 4.20 0.175 -0.08 0.0 -0.08 0.22 \\ 140 202 0.400 0.06 60.0 3.54 0.400 0.06 52.5 4.34 0.200 -0.08 0.0 -0.09 0.23 \\ 141 203 0.400 0.06 60.0 3.54 0.400 0.06 52.5 3.80 0.225 -0.06 0.0 -0.052 0.22 \\ 142 204 0.425 0.08 60.0 3.56 0.400 0.06 50.3 3.95 0.225 -0.06 0.0 -1.02 0.36 \\ 142 204 0.425 0.08 60.0 3.56 0.400 0.06 50.0 3.95 0.225 -0.04 0.0 -1.46 0.32 \\ 144 206 0.425 0.08 60.0 3.56 0.400 0.06 50.0 3.95 0.225 -0.04 0.0 -1.46 0.32 \\ 144 206 0.425 0.08 57.5 3.44 0.425 0.08 50.0 3.78 0.225 -0.04 0.0 -1.46 0.32 \\ 120 181 181 0.375 0.00 0.0 3.47 0.350 0.00 0.0 3.78 0.150 0.06 0.0 0.116 0.36 \\ 121 184 0.375 0.00 0.0 3.47 0.355 0.00 0.0 3.78 0.150 0.06 0.0 0.116 0.32 \\ 1$ | | | | | | | | | | | | | | | | | 131 195 | | | | | | | | | | | | | | | | | 134 196 | | | | | | | | | | | | | | | | | 135 197 | | | | | | | | | | | | | | | | | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $ | | | | | | | | | | | | | | | | | 136 198 | 135 | 197 | | | | | | | | | | | | | | | 136 198 | | | | | | | | | | | | | | | | | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $ | 100 | 100 | | | | | | | | | | | | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 136 | 198 | | | | | | | | | | | | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | | | | | | | | $\begin{array}{c} 138\ 200 & 0.400 & 0.40\ 6.00 & 4.11 & 0.375\ 0.04\ 52.5 & 4.34 & 0.200\ -0.08\ 0.0\ -0.09\ 0.23 \\ 140\ 202 & 0.400\ 0.06\ 6.00\ 3.84 & 0.400\ 0.06\ 52.5 & 4.06 & 0.225\ -0.06\ 0.0\ -0.52 & 0.22 \\ 141\ 203 & 0.400\ 0.06\ 60.0\ 3.54 & 0.400\ 0.06\ 52.5 & 3.80 & 0.225\ -0.06\ 0.0\ -1.02 & 0.26 \\ 142\ 204 & 0.425 & 0.08\ 60.0\ 3.60 & 0.400\ 0.06\ 50.0\ 3.95 & 0.225\ -0.06\ 0.0\ -1.03 & 0.36 \\ 143\ 205 & 0.425 & 0.08\ 60.0\ 3.43 & 0.400\ 0.06\ 50.0\ 3.76 & 0.225\ -0.04\ 0.0\ -1.146 & 0.32 \\ 144\ 206 & 0.425\ 0.08\ 60.0\ 3.56 & 0.400\ 0.06\ 50.0\ 3.76 & 0.225\ -0.04\ 0.0\ -1.146 & 0.32 \\ 144\ 206 & 0.425\ 0.08\ 57.5 & 3.44 & 0.425\ 0.08\ 50.0\ 3.78 & 0.225\ -0.04\ 0.0\ -1.175 & 0.34 \\ 146\ 208 & 0.425\ 0.08\ 57.5 & 3.44 & 0.425\ 0.08\ 50.0\ 3.97 & 0.250\ -0.02\ 0.0\ -1.62 & 0.28 \\ \textbf{Z} = 63\ (Eu) \\ \textbf{E} \ 0.325\ -0.04\ 60.0\ 4.09 & 0.325\ -0.04\ 47.5 & 4.49 & 0.325\ 0.00\ 0.0\ -0.48 & 0.40 \\ 118\ 181 & 0.375\ 0.00\ 0.0\ 3.63 & 0.350\ 0.02\ 5.0\ 3.93 & 0.150\ 0.06\ 0.0\ 0.0\ -0.11 & 0.30 \\ 119\ 182\ 0.375\ 0.00\ 0.0\ 3.47 & 0.350\ 0.00\ 0.0\ 3.78 & 0.150\ 0.06\ 0.0\ 0.0\ -0.11 & 0.30 \\ 120\ 183\ 0.375\ 0.00\ 0.0\ 3.47 & 0.350\ 0.00\ 0.0\ 3.78 & 0.150\ 0.02\ 55.0\ -0.21 & 0.31 \\ 120\ 183\ 0.375\ 0.00\ 0.0\ 3.59 & 0.350\ 0.00\ 0.0\ 3.94 & 0.150\ 0.02\ 55.0\ -0.21 & 0.31 \\ 121\ 184\ 0.375\ 0.00\ 0.0\ 3.59 & 0.350\ 0.00\ 0.0\ 3.94 & 0.150\ 0.02\ 60.0\ -1.16 & 0.32 \\ 121\ 184\ 0.375\ 0.00\ 0.0\ 3.50 & 0.350\ 0.00\ 0.0\ 3.94 & 0.150\ 0.02\ 60.0\ -1.40 & 0.33 \\ 0.150\ 0.02\ 0.0\ 3.70 & 0.325\ 0.02\ 0.0\ 4.03 & 0.100\ 0.02\ 30.0\ -1.40 & 0.33 \\ 123\ 186\ 0.375\ 0.02\ 0.0\ 3.70 & 0.325\ 0.02\ 0.0\ 4.03 & 0.100\ 0.02\ 30.0\ -1.40 & 0.33 \\ 123\ 186\ 0.375\ 0.02\ 0.0\ 3.75 & 0.350\ 0.02\ 0.0\ 4.03 & 0.100\ 0.02\ 30.0\ -1.40 & 0.34 \\ 123\ 186\ 0.375\ 0.02\ 0.0\ 3.75 & 0.350\ 0.02\ 0.0\ 4.03 & 0.125\ 0.02\ 0.00\ 0.0\ 0.0\ 0.0\ 0.0\ 0.0\ 0$ | 107 | 100 | | | | | | | | | | | | | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | | | | | | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | | | | | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | | | | | | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | | | | | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | | | | | | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | | | | | | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | | 0.00 | 51.5 | 3.09 | 0.420 | 0.00 | 50.0 | 3.91 | 0.200 | -0.02 | 0.0 | -1.02 | 0.20 | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | ` ' | 0.04 | <i>c</i> o o | 4.00 | 0.205 | 0.04 | 47 F | 4.40 | 0.225 | 0.00 | 0.0 | 0.49 | 0.40 | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | | | | | | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | | | | | | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 119 | 102 | | | | | | | | | | | | | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | | | | | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 190 | 199 | | | | | | | | | | | | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | | | | | | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | | | | | _ | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 122 | 100 | | | | | | | | | | | | | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | | | | | | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 123 | 186 | | | | | | | | | | | | | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | | | | | | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | | | | | | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | | | | | | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | | | | | | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | | | | | | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | | | | | | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | | | | | | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | | | | | | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | | | | | | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | | | | | | | | 135 198 0.375 0.06 0.0 3.06 0.350 0.04 0.0 3.30 0.175 -0.08 0.0 0.54 0.24 $Z = 64$ (Gd) | | | | | | | | | | | | | | | | | $Z=64~(\mathrm{Gd})$ | $80 \ 144 \qquad 0.425 0.02 0.0 4.45 \qquad 0.375 0.02 0.0 4.70 \qquad 0.150 0.02 \ 60.0 \ -0.39 \qquad 0.25$ | | 144 | 0.425 | 0.02 | 0.0 | 4.45 | 0.375 | 0.02 | 0.0 | 4.70 | 0.150 | 0.02 | 60.0 | -0.39 | 0.25 | Table (continued) | Nuc | eleus | | Minir | num | | | Sac | ldle | | | Mini | mum | | S.H. | |----------------|----------------|--------------------------|--------------|--------------|----------------|--------------|--------------|--------------|-------|--------------|--------------|----------|---------------|---------------| | \overline{N} | \overline{A} | ϵ_2 | ϵ_4 | γ | \overline{E} | ϵ_2 | ϵ_4 | γ | E | ϵ_2 | ϵ_4 | γ | E | $E_{\rm sad}$ | | | | _ | _ | , | (MeV) | _ | _ | , | (MeV) | _ | | , | (MeV) | (MeV) | | Z | 7 = 64 | 4 (Gd) | | | | | | | | | | | | | | | 182 | 0.375 | 0.00 | 0.0 | 3.67 | 0.350 | 0.02 | 5.0 | 3.98 | 0.150 | 0.06 | 0.0 | 0.04 | 0.31 | | 119 | 183 | 0.375 | 0.00 | 0.0 | 3.52 | 0.350 | 0.00 | 0.0 | 3.83 | 0.150 | 0.06 | 0.0 | -0.12 | 0.31 | | | | 0.375 | 0.00 | 0.0 | 3.52 | 0.350 | 0.00 | 0.0 | 3.83 | 0.175 | | 57.5 | -0.31 | 0.31 | | | | 0.150 | 0.06 | 0.0 | -0.12 | 0.175 | 0.04 | 32.5 | 0.21 | 0.175 | | 57.5 | -0.31 | 0.33 | | 120 | 184 | 0.375 | 0.00 | 0.0 | 3.65 | 0.350 | 0.00 | 0.0 | 3.97 | 0.175 | | 60.0 | -0.68 | 0.31 | | | 185 | 0.375 | 0.00 | 0.0 | 3.60 | 0.325 | 0.02 | 0.0 | 4.03 | 0.150 | | 60.0 | -1.25 | 0.42 | | | 186 | 0.375 | 0.02 | 0.0 | 3.81 | 0.325 | 0.02 | 0.0 | 4.13 | 0.100 | | 30.0 | -1.33 | 0.32 | | | | 0.375 | 0.02 | 0.0 | 3.81 | 0.325 | 0.02 | 0.0 | 4.13 | 0.125 | | 60.0 | -1.46 | 0.32 | | | | 0.100 | 0.02 | 30.0 | -1.33 | 0.125 | 0.02 | 32.5 | -1.02 | 0.125 | | 60.0 | -1.46 | 0.31 | | 123 | 187 | 0.375 | 0.02 | 0.0 | 3.72 | 0.325 | 0.02 | 0.0 | 4.07 | 0.075 | | 60.0 | -2.54 | 0.35 | | | 188 | 0.375 | 0.02 | 0.0 | 3.87 | 0.350 | 0.00 | 0.0 | 4.14 | 0.050 | | 60.0 | -3.22 | 0.28 | | | 189 | 0.375 | 0.02 | 0.0 | 3.77 | 0.300 | 0.02 | 0.0 | 4.07 | 0.000 | 0.00 | 0.0 | -4.53 | 0.30 | | | 190 | 0.375 | 0.02 | 0.0 | 3.91 | 0.350 | 0.02 | 0.0 | 4.16 | 0.000 | 0.00 | 0.0 | -5.13 | 0.26 | | | 191 | 0.375 | 0.02 | 0.0 | 3.83 | 0.350 | 0.02 | 0.0 | 4.05 | 0.025 | 0.00 | | -4.16 | 0.21 | | | 193 | 0.375 | 0.04 | 0.0 | 3.70 | 0.350 | 0.02 | 0.0 | 3.95 | 0.025 | | 57.5 | -1.99 | 0.25 | | | 194 | 0.375 | 0.04 | 0.0 | 3.75 | 0.350 | 0.02 | 0.0 | 3.97 | 0.000 | 0.00 | 0.0 | -0.71 | 0.22 | | | 195 | 0.375 | 0.04 | 0.0 | 3.52 | 0.350 | 0.02 | 0.0 | 3.78 | 0.100 | -0.04 | 0.0 | -0.14 | 0.26 | | | | 5 (Tb) | | | | | | | | | | | - | | | | 183 | 0.375 | 0.00 | 0.0 | 3.64 | 0.350 | 0.04 | 12.5 | 4.03 | 0.200 | 0.04 | 50.0 | 0.32 | 0.39 | | 110 | 100 | 0.375 | 0.00 | 0.0 | 3.64 | 0.350 | 0.04 | 12.5 12.5 | 4.03 | 0.150 | 0.04 | 0.0 | -0.05 | 0.39 | | | | 0.200 | | 50.0 | 0.32 | 0.175 | 0.04 | 30.0 | 0.57 | 0.150 | 0.06 | 0.0 | -0.05 | 0.25 | | 110 | 184 | 0.375 | 0.04 | 5.0 | 3.52 | 0.350 | 0.04 | 5.0 | 3.86 | 0.150 | 0.06 | 7.5 | -0.19 | 0.29 0.34 | | 113 | 104 | 0.375 | 0.00 | 5.0 | 3.52 | 0.350 | 0.02 | 5.0 | 3.86 | 0.100
 0.04 | | -0.43 | 0.34 | | | | 0.375 0.150 | 0.06 | 7.5 | -0.19 | 0.330 | 0.02 | 32.5 | 0.12 | 0.200 | | 60.0 | -0.43 | 0.34 0.32 | | 120 | 185 | 0.375 | 0.00 | 5.0 | 3.66 | 0.350 | 0.04 | 0.0 | 3.99 | 0.175 | | 60.0 | -0.83 | 0.32 | | | 186 | 0.375 | 0.00 | 0.0 | 3.64 | 0.325 | 0.02 | 0.0 | 4.02 | 0.170 | | 60.0 | -1.36 | 0.38 | | | 187 | 0.375 | 0.02 | 0.0 | 3.78 | 0.350 | 0.02 | 0.0 | 4.02 | 0.100 | | 30.0 | -1.32 | 0.25 | | 122 | 101 | 0.375 | 0.02 | 0.0 | 3.78 | 0.350 | 0.00 | 0.0 | 4.02 | 0.125 | | 60.0 | -1.53 | 0.25 | | | | 0.100 | 0.02 | 30.0 | -1.32 | 0.125 | 0.00 | 32.5 | -1.05 | 0.125 | | 60.0 | -1.53 | 0.25 0.27 | | 193 | 188 | 0.375 | 0.02 | 0.0 | 3.70 | 0.125 | 0.02 | 0.0 | 4.07 | 0.125 | | 57.5 | -2.53 | 0.27 0.37 | | | 189 | 0.375 | 0.02 | 0.0 | 3.84 | 0.350 | 0.02 | 0.0 | 4.11 | 0.050 | | 60.0 | -3.16 | 0.37 | | | 190 | 0.375 | 0.02 | 0.0 | 3.75 | 0.350 | 0.02 | 0.0 | 4.04 | 0.030 | | 57.5 | -4.32 | 0.21 | | | 191 | 0.375 | 0.02 | 0.0 | 3.88 | 0.350 | 0.02 | 0.0 | 4.12 | 0.020 | | | -4.85 | 0.23 0.24 | | | 194 | 0.375 | 0.02 | | 3.66 | 0.350 | 0.02 | 0.0 | 3.90 | | | | -1.79 | 0.24 0.24 | | | 194 | 0.375 | 0.04 | 0.0 | 3.70 | 0.350 | 0.02 | 0.0 | | | | | -0.51 | 0.24 0.20 | | | 196 | 0.375 | 0.04 | 0.0 | 3.48 | 0.350 | 0.02 | 0.0 | 3.72 | | | | -0.10 | 0.20 0.24 | | | | | 0.04 | 0.0 | 9.40 | 0.550 | 0.02 | 0.0 | 0.12 | 0.100 | 0.04 | 0.0 | 0.10 | 0.24 | | | $_{1} = 00$ | 6 (Dy)
0.425 | 0.06 | 0.0 | 3.04 | 0.400 | -0.04 | 0.0 | 3.31 | 0.200 | 0.06 | 10.0 | 0.94 | 0.27 | | | $135 \\ 146$ | | -0.00 0.02 | $0.0 \\ 0.0$ | | | | $0.0 \\ 0.0$ | | 0.300 | | | -0.84 -0.77 | | | | | 0.425 | | | 4.50 | 0.375 | 0.04 | | 4.76 | 0.150 | | | | 0.26 | | 110 | 184 | $0.375 \\ 0.375$ | 0.00 | 0.0 | 3.71 | 0.350 | 0.00 | 2.5 | 3.99 | 0.200 | | 50.0 | | 0.28 | | | | | 0.00 | 0.0 | 3.71 | 0.350 | 0.00 | 2.5 | 3.99 | 0.150 | 0.06 | | -0.29 | 0.28 | | 110 | 105 | 0.200 | 0.04 | | 0.02 | 0.175 | | 30.0 | 0.41 | 0.150 | 0.06 | | -0.29 | 0.39 | | 119 | 185 | 0.375 | 0.00 | 5.0 | 3.59 | 0.350 | | -2.5 | 3.93 | 0.150 | 0.06 | | -0.41 | 0.35 | | | | 0.375 | 0.00 | 5.0 | 3.59 | 0.350 | | -2.5 | 3.93 | 0.175 | | | -0.71 | 0.35 | | 100 | 100 | 0.150 | 0.06 | 0.0 | -0.41 | 0.150 | | 32.5 | -0.06 | 0.175 | | | -0.71 | 0.34 | | | 186 | 0.375 | 0.00 | 5.0 | 3.76 | 0.350 | 0.02 | 2.5 | 4.07 | 0.175 | | | -1.09 | 0.31 | | | 187 | 0.375 | 0.02 | 0.0 | 3.72 | 0.350 | 0.02 | 0.0 | 4.01 | 0.150 | | | -1.58 | 0.29 | | 122 | 188 | 0.375 | 0.02 | 0.0 | 3.87 | 0.350 | 0.02 | 0.0 | 4.15 | 0.100 | | | -1.47 | 0.28 | | | | 0.375 | 0.02 | 0.0 | 3.87 | 0.350 | 0.02 | 0.0 | 4.15 | 0.125 | | | -1.72 | 0.28 | | | | 0.100 | 0.02 | <i>3</i> 0.0 | -1.47 | 0.125 | 0.02 | 32.5 | -1.20 | 0.125 | 0.02 | 0.00 | -1.72 | 0.27 | Table (continued) | Nucleus | Minimum | Saddle | Minimum | S.H. | |--------------------|--|--|--|----------------| | \overline{N} A | ϵ_2 ϵ_4 γ E | ϵ_2 ϵ_4 γ E | ϵ_2 ϵ_4 γ E | $E_{\rm sad}$ | | | (MeV) | (MeV) | (MeV) | (MeV) | | $Z = 66 \; (1$ | | | | | | 123 189 | $0.375 \ 0.02 \ 0.0 \ 3.80$ | $0.325 \ 0.02 \ 0.0 \ 4.18$ | 0.125 0.02 60.0 -2.46 | 0.38 | | 124 190 | $0.375 \ 0.02 \ 0.0 \ 3.95$ | $0.325 \ 0.02 \ 0.0 \ 4.25$ | 0.075 0.02 60.0 -3.23 | 0.30 | | 125 191 | $0.375 \ 0.02 \ 0.0 \ 3.85$ | $0.325 \ 0.02 \ 0.0 \ 4.15$ | 0.000 0.00 0.0 -4.42 | 0.30 | | 126 192 | 0.375 0.02 0.0 3.99 | $0.350 \ 0.02 \ 0.0 \ 4.23$ | 0.000 0.00 0.0 -4.97 | 0.23 | | 127 193 | 0.375 0.04 0.0 3.89 | $0.350 \ 0.02 \ 0.0 \ 4.10$ | 0.025 0.00 60.0 -3.99 | 0.21 | | 128 194 | 0.375 0.04 0.0 3.93 | $0.350 \ 0.02 \ 0.0 \ 4.15$ | 0.000 0.00 0.0 -2.88 | 0.22 | | 129 195 | 0.375 0.04 0.0 3.72 | 0.350 0.02 0.0 4.00 | 0.025 0.00 60.0 -1.79 | 0.27 | | 130 196 | 0.375 0.04 0.0 3.77 | 0.350 0.02 0.0 4.00 | 0.000 0.00 0.0 -0.49 | 0.23 | | 131 197 | 0.375 0.04 0.0 3.54 | $0.350 \ 0.02 \ 0.0 \ 3.81$ | $0.100 \ -0.04 \ 0.0 \ -0.06$ | 0.27 | | Z=67 (1) | , | 0.000 0.04 00.0 0.14 | 0.177 0.00 0.0 0.00 | 0.00 | | 117 184 | $0.200 \ 0.04 \ 42.5 \ -0.09$ | 0.200 0.04 30.0 0.14 | 0.175 0.06 0.0 -0.63 | 0.23 | | 118 185 | $0.200 \ 0.04 \ 50.0 \ -0.27$ | 0.175 0.04 30.0 0.17 | 0.150 0.06 0.0 -0.57 | 0.44 | | 119 186 | 0.375 0.00 7.5 3.59 | 0.350 0.02 7.5 3.81 | 0.150 0.06 0.0 -0.67 | 0.22 | | | 0.375 0.00 7.5 3.59 | 0.350 0.02 7.5 3.81 | 0.200 0.04 55.0 -1.03 | 0.22 | | 100 105 | $0.150 \ 0.06 \ 0.0 \ -0.67$ | $0.175 \ 0.04 \ 32.5 \ -0.23$ | 0.200 0.04 55.0 -1.03 | 0.44 | | 120 187 | 0.375 0.02 7.5 3.73 | 0.350 0.02 7.5 3.98 | 0.175 0.02 60.0 -1.36 | 0.25 | | 121 188 | $0.375 \ 0.02 \ 7.5 \ 3.69$ | 0.325 0.04 0.0 4.06 | 0.150 0.02 60.0 -1.80 | 0.37 | | 122 189 | 0.375 0.02 5.0 3.85 | 0.350 0.02 0.0 4.09 | 0.100 0.02 30.0 -1.60 | 0.23 | | | 0.375 0.02 5.0 3.85 | 0.350 0.02 0.0 4.09 | 0.125 0.02 60.0 -1.90 | 0.23 | | 102 100 | $0.100 \ 0.02 \ 30.0 \ -1.60$ | $0.125 \ 0.02 \ 32.5 \ -1.36$ | 0.125 0.02 60.0 -1.90 | 0.24 | | 123 190 | 0.375 0.02 0.0 3.82 | 0.325 0.04 0.0 4.20 | 0.125 0.02 60.0 -2.63 | 0.38 | | 124 191 | 0.375 0.02 0.0 3.97 | 0.325 0.02 0.0 4.21 | 0.075 0.02 60.0 -3.34 | 0.24 | | 125 192
127 194 | 0.375 0.02 0.0 3.88
0.375 0.04 0.0 3.83 | $0.325 \ 0.02 \ 0.0 \ 4.11$ $0.350 \ 0.02 \ 0.0 \ 4.05$ | 0.000 0.00 0.0 -4.41 0.025 0.00 55.0 -4.00 | 0.23 | | 127 194 128 195 | 0.375 0.04 0.0 3.83
0.375 0.04 0.0 3.87 | $0.350 \ 0.02 \ 0.0 \ 4.05 \ 0.350 \ 0.02 \ 0.0 \ 4.09$ | 0.025 0.00 0.0 0.0 -2.84 | $0.22 \\ 0.22$ | | 128 193 | 0.375 0.04 0.0 3.67 | $0.350 \ 0.02 \ 0.0 \ 4.09$ $0.350 \ 0.02 \ 0.0 \ 3.94$ | 0.000 0.00 0.0 -2.84 0.025 0.00 57.5 -1.80 | $0.22 \\ 0.27$ | | 131 198 | 0.375 0.04 0.0 3.07 0.375 0.04 0.0 3.48 | $0.350 \ 0.02 \ 0.0 \ 3.94$ $0.350 \ 0.02 \ 12.5 \ 3.72$ | $0.100 -0.04 \ 0.0 -0.16$ | 0.27 0.23 | | | | 0.550 0.02 12.5 5.72 | 0.100 -0.04 0.0 -0.10 | 0.20 | | $Z = 68 \; (1)$ | , | 0.175 0.04 20.0 0.17 | 0.175 0.00 0.0 0.00 | 0.05 | | 117 185 | $0.200 \ 0.04 \ 45.0 \ -0.41$
$0.200 \ 0.04 \ 55.0 \ -0.64$ | $0.175 \ 0.04 \ 30.0 \ -0.17$
$0.150 \ 0.04 \ 30.0 \ -0.17$ | 0.175 0.08 0.0 -0.96 0.150 0.06 0.0 -0.95 | $0.25 \\ 0.47$ | | 118 186
119 187 | $0.200 \ 0.04 \ 55.0 \ -0.04$ $0.375 \ 0.02 \ 7.5 \ 3.58$ | $0.130 \ 0.04 \ 30.0 \ -0.17$ $0.325 \ 0.04 \ 10.0 \ 3.86$ | 0.150 0.06 0.0 -0.95 0.150 0.06 0.0 -1.01 | $0.47 \\ 0.28$ | | 119 101 | 0.375 0.02 7.5 3.58 | 0.325 0.04 10.0 3.86 | 0.190 0.00 0.0 -1.01 $0.200 0.04 57.5 -1.40$ | 0.28 0.28 | | | $0.375 \ 0.02 \ 7.3 \ 3.36$ $0.150 \ 0.06 \ 0.0 \ -1.01$ | $0.325 \ 0.04 \ 10.0 \ 3.80$ $0.150 \ 0.04 \ 32.5 \ -0.61$ | 0.200 0.04 57.5 -1.40 $0.200 0.04 57.5 -1.40$ | 0.28 0.40 | | 120 188 | $0.375 \ 0.02 \ 7.5 \ 3.73$ | 0.325 0.04 0.0 4.08 | 0.175 0.04 60.0 -1.71 | 0.40 0.35 | | 121 189 | $0.375 \ 0.02 \ 7.5 \ 3.69$ | $0.325 \ 0.04 \ 0.0 \ 4.17$ | $0.170 0.04 00.0 1.71 \\ 0.150 0.02 60.0 -2.15$ | 0.33 0.48 | | 122 190 | 0.375 0.02 7.5 3.87 | $0.325 \ 0.04 \ 0.0 \ 4.30$ | 0.125 0.02 60.0 -2.24 | 0.43 | | 123 191 | 0.375 0.02 7.5 3.87 | $0.325 \ 0.04 \ 0.0 \ 4.26$ | 0.120 0.02 00.0 2.24 0.100 0.02 57.5 -3.17 | 0.40 | | 124 192 | 0.375 0.02 0.0 4.04 | $0.325 \ 0.02 \ 0.0 \ 4.20$ $0.325 \ 0.02 \ 0.0 \ 4.34$ | 0.075 0.02 60.0 -3.64 | 0.30 | | 125 193 | $0.375 \ 0.02 \ 0.0 \ 3.94$ | $0.325 \ 0.02 \ 0.0 \ 4.04$ | 0.000 0.02 0.03 3.04 $0.000 0.00 0.0 -4.79$ | 0.29 | | 126 194 | 0.375 0.04 0.0 4.03 | $0.325 \ 0.02 \ 0.0 \ 4.27$ | 0.000 0.00 0.0 -5.21 | 0.24 | | 127 195 | 0.375 0.04 0.0 4.03 | 0.300 0.02 5.0 4.18 | 0.025 0.00 60.0 -4.22 | 0.24 | | 128 196 | 0.375 0.04 0.0 3.89 | 0.350 0.02 0.0 4.16 | 0.000 0.00 0.0 -3.09 | 0.27 | | 129 197 | 0.375 0.04 0.0 3.68 | $0.350 \ 0.02 \ 0.0 \ 4.10$ $0.350 \ 0.02 \ 0.0 \ 4.01$ | 0.025 0.00 60.0 -2.00 | 0.33 | | 131 199 | 0.375 0.04 0.0 3.47 | $0.350 \ 0.02 \ 0.0 \ 3.71$ | $0.100 -0.04 \ 2.5 -0.24$ | 0.33 | | $Z=69 \ (7)$ | | 0.000 0.01 0.0 0.11 | 5.100 5.01 2. 0 0. 2 1 | U.2 I | | 2 = 03 (1) | $0.200 \ 0.04 \ 45.0 \ -0.76$ | $0.200 \ 0.04 \ 32.5 \ -0.45$ | 0.175 0.08 0.0 -1.41 | 0.31 | | 117 180 | $0.200 \ 0.04 \ 45.0 \ -0.70$ $0.200 \ 0.04 \ 57.5 \ -0.99$ | $0.200 \ 0.04 \ 32.0 \ -0.43$ $0.150 \ 0.04 \ 30.0 \ -0.52$ | 0.170 0.08 0.0 -1.41 $0.150 0.06 0.0 -1.37$ | 0.31 0.47 | | 119 188 | 0.375 0.02 10.0 3.50 | 0.325 0.04 5.0 3.81 | 0.150 0.06 0.0 1.37 0.150 0.06 0.0 -1.45 | 0.30 | | 110 100 | 0.375 0.02 10.0 3.50 | 0.325 0.04 5.0 3.81 | 0.200 0.04 57.5 -1.72 | 0.30 | | | | | | 0.00 | Table (continued) | Nucleus | Minimum | Saddle | Minimum | S.H. | |-------------------------|---|---|---|----------------| | \overline{N} A | $\epsilon_2 \epsilon_4 \gamma E$ | ϵ_2 ϵ_4 γ E | $\epsilon_2 \epsilon_4 \gamma E$ | $E_{\rm sad}$ | | | (MeV) | (MeV) | (MeV) | (MeV) | | Z=69 | | | | | | 119 188 | $0.150 \ 0.06 \ 0.0 \ -1.45$ | $0.150 \ 0.04 \ 32.5 \ -0.95$ | 0.200 0.04 57.5 -1.72 | 0.50 | | 120 189 | $0.375 \ 0.02 \ 10.0 \ 3.65$ | $0.325 \ 0.04 \ 0.0 \ 4.02$ | 0.175 0.04 60.0 -2.05 | 0.36 | | $121 \ 190$ | $0.375 \ 0.02 \ 10.0 \ 3.63$ | $0.325 \ 0.04 \ 0.0 \ 4.10$ | 0.150 0.02 60.0 -2.47 | 0.47 | | 122 191 | $0.375 \ 0.02 \ 10.0 \ 3.84$ | 0.325 0.04 0.0 4.24 | 0.100 0.02 60.0 -2.40 | 0.40 | | 123 192 | $0.375 \ 0.02 \ 10.0 \ 3.82$ | 0.325 0.02 0.0 4.26 | 0.100 0.02 57.5 -3.46 | 0.44 | | 124 193 | 0.375 0.02 10.0 4.03 | 0.325 0.02 0.0 4.32 | 0.075 0.02 60.0 -3.88 | 0.30 | | 125 194 | 0.375 0.04 0.0 3.95 | 0.325 0.04 0.0 4.27 | 0.000 0.00 0.0 -4.97 | 0.32 |
 126 195 | $0.375 \ 0.04 \ 0.0 \ 4.00$ | 0.325 0.02 0.0 4.25 | 0.000 0.00 0.0 -5.47 | 0.25 | | 127 196 | 0.375 0.04 0.0 3.81 | 0.300 0.02 0.0 4.16 | 0.025 0.00 60.0 -4.40 | 0.35 | | 128 197 | 0.375 0.04 0.0 3.86 | 0.350 0.04 0.0 4.12 | 0.000 0.00 0.0 -3.27 | 0.26 | | 129 198 | $0.375 \ 0.04 \ 0.0 \ 3.65$ | 0.350 0.04 0.0 3.92 | 0.025 0.00 57.5 -2.17 | 0.27 | | 131 200 | $0.375 \ 0.06 \ 0.0 \ 3.40$ | 0.375 0.04 15.0 3.73 | 0.100 -0.04 0.0 -0.44 | 0.33 | | 132 201 | $0.375 \ 0.06 \ 0.0 \ 3.41$ | $0.375 \ 0.04 \ 12.5 \ 3.67$ | $0.100 -0.04 \ 0.0 \ 0.29$ | 0.25 | | Z = 70 | ` , | 0.155 0.04 0.00 0.00 | | | | 117 187 | $0.200 \ 0.04 \ 45.0 \ -1.11$ | $0.175 \ 0.04 \ 30.0 \ -0.86$ | 0.175 0.08 0.0 -1.76 | 0.25 | | 118 188 | $0.200 \ 0.04 \ 60.0 \ -1.41$ | $0.175 \ 0.04 \ 32.5 \ -0.82$ | 0.150 0.06 0.0 -1.80 | 0.59 | | 119 189 | $0.375 \ 0.02 \ 10.0 \ 3.52$ | 0.350 0.04 7.5 3.89 | 0.150 0.06 0.0 -1.86 | 0.38 | | | $0.375 \ 0.02 \ 10.0 \ 3.52$ | 0.350 0.04 7.5 3.89 | 0.200 0.04 57.5 -2.10 | 0.38 | | 100 100 | $0.150 \ 0.06 \ 0.0 \ -1.86$ | $0.150 \ 0.04 \ 32.5 \ -1.39$ | 0.200 0.04 57.5 -2.10 | 0.47 | | 120 190 | 0.375 0.02 10.0 3.68 | 0.350 0.04 5.0 4.10 | 0.175 0.04 60.0 -2.48 | 0.42 | | 121 191 | $0.375 \ 0.02 \ 7.5 \ 3.65$ | 0.325 0.04 0.0 4.23 | 0.150 0.02 60.0 -2.90 | 0.58 | | 122 192 | $0.375 \ 0.02 \ 10.0 \ 3.85$ | 0.325 0.02 0.0 4.41 | 0.100 0.02 60.0 -2.91 | 0.56 | | 123 193 | $0.375 \ 0.02 \ 10.0 \ 3.85$ | 0.325 0.04 0.0 4.37 | 0.100 0.02 57.5 -3.95 | 0.52 | | 124 194 | 0.375 0.02 10.0 4.07 | 0.325 0.04 0.0 4.45 | 0.075 0.02 60.0 -4.37 | 0.38 | | 125 195
126 196 | $0.375 \ 0.04 \ 0.0 \ 3.93$ | $0.300 \ 0.04 \ 0.0 \ 4.44$ | 0.000 0.00 0.0 -5.48 | 0.51 | | $120 \ 190$ $127 \ 197$ | $0.375 \ 0.04 \ 0.0 \ 4.00$ $0.375 \ 0.04 \ 0.0 \ 3.81$ | 0.300 0.02 0.0 4.52
0.300 0.02 0.0 4.39 | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | $0.52 \\ 0.58$ | | 127 197 128 198 | 0.375 0.04 0.0 3.87 | $0.300 \ 0.02 \ 0.0 \ 4.35$ | 0.025 0.00 37.5 -4.88 0.000 0.00 0.0 -3.72 | 0.38 0.47 | | 129 199 | $0.375 \ 0.04 \ 0.0 \ 3.63$ | $0.300 \ 0.02 \ 0.0 \ 4.35$ $0.275 \ 0.04 \ 0.0 \ 4.22$ | 0.025 0.00 57.5 -2.59 | 0.47 0.59 | | 130 200 | 0.375 0.06 0.0 3.61 | 0.300 0.02 12.5 4.17 | 0.025 0.00 37.5 -2.39 0.050 -0.02 0.0 -1.27 | 0.56 | | 130 200 | 0.375 0.06 0.0 3.34 | 0.300 0.02 12.3 4.17 0.300 0.02 15.0 3.95 | 0.030 - 0.02 - 0.0 - 1.27 $0.100 - 0.04 - 0.0 - 0.63$ | 0.50 0.61 | | $131 \ 201$ $132 \ 202$ | 0.375 0.06 0.0 3.36 | 0.300 0.02 17.5 3.86 | 0.100 -0.04 0.0 -0.03 $0.100 -0.04 0.0 0.12$ | 0.50 | | 132 202 | $0.375 \ 0.06 \ 0.0 \ 3.09$ | $0.300 \ 0.02 \ 17.5 \ 3.54$ | 0.100 -0.04 -0.0 -0.12 $0.100 -0.04 -0.0 -0.12$ | 0.30 0.45 | | 134 204 | 0.325 0.02 15.0 3.14 | 0.375 0.06 10.0 3.47 | 0.375 0.06 0.0 3.18 | 0.49 | | 104 204 | $0.325 \ 0.02 \ 15.0 \ 3.14$ | 0.300 0.02 17.5 3.40 | 0.125 - 0.04 0.0 1.08 | 0.26 | | | 0.375 0.06 0.0 3.18 | 0.300 0.02 17.5 3.40 | 0.125 0.04 0.0 1.00 $0.125 -0.04 0.0 1.08$ | 0.20 | | 135 205 | 0.375 0.06 0.0 2.97 | 0.375 0.06 10.0 3.25 | 0.325 0.02 15.0 2.82 | 0.21 | | 100 200 | 0.375 0.06 0.0 2.97 | 0.375 0.06 10.0 3.25 | 0.150 -0.04 0.0 1.20 | 0.28 | | | 0.325 0.02 15.0 2.82 | 0.300 0.02 17.5 3.08 | $0.150 -0.04 \ 0.0 \ 1.20$ | 0.26 | | Z = 71 | | 0.000 0.02 11.0 0.00 | 0.130 0.01 0.0 1.20 | 0.20 | | 2 - 11 $117 188$ | $0.200 \ 0.04 \ 47.5 \ -1.52$ | $0.175 \ 0.04 \ 30.0 \ -1.31$ | 0.175 0.08 0.0 -2.30 | 0.20 | | 118 189 | 0.375 0.02 10.0 3.67 | 0.350 0.04 5.0 3.91 | 0.200 0.04 55.0 -1.82 | 0.20 0.24 | | 110 100 | 0.375 0.02 10.0 3.67 | 0.350 0.04 5.0 3.91 | 0.150 0.06 0.0 -2.32 | 0.24 | | | $0.200 \ 0.04 \ 55.0 \ -1.82$ | $0.175 \ 0.04 \ 32.5 \ -1.26$ | 0.150 0.06 0.0 -2.32 | 0.56 | | 119 190 | 0.375 0.02 10.0 3.49 | 0.350 0.02 2.5 3.90 | 0.150 0.06 0.0 -2.38 | 0.41 | | 100 | 0.375 0.02 10.0 3.49 | $0.350 \ 0.02 \ 2.5 \ 3.90$ | 0.200 0.04 57.5 -2.47 | 0.41 | | | $0.150 \ 0.06 \ 0.0 \ -2.38$ | $0.150 \ 0.04 \ 32.5 \ -1.85$ | 0.200 0.04 57.5 -2.47 | 0.54 | | 120 191 | 0.375 0.02 10.0 3.66 | 0.325 0.04 0.0 4.16 | 0.175 0.04 60.0 -2.89 | 0.50 | | 121 192 | 0.375 0.02 10.0 3.64 | 0.325 0.04 0.0 4.25 | 0.150 0.02 60.0 -3.30 | 0.61 | | 122 193 | 0.375 0.02 10.0 3.84 | 0.325 0.04 0.0 4.38 | 0.100 0.02 60.0 -3.35 | 0.54 | | | | | (continues on r | | Table (continued) | Nucleus | | Min | imum | | | Sa | ddle | | | Mini | mum | | S.H. | |-------------|--------------|--------------|----------|----------------|--------------|--------------|----------|-------|--------------|--------------|----------|-------|---------------| | N A | ϵ_2 | ϵ_4 | γ | \overline{E} | ϵ_2 | ϵ_4 | γ | E | ϵ_2 | ϵ_4 | γ | E | $E_{\rm sad}$ | | | | | | (MeV) | | | | (MeV) | | | | (MeV) | (MeV) | | | ′1 (Lu) | | | | | | | | | | | | | | $123 \ 194$ | 0.400 | | | 3.82 | 0.325 | | 0.0 | 4.39 | 0.100 | | 57.5 | -4.35 | 0.57 | | $124 \ 195$ | 0.375 | | 10.0 | 4.07 | 0.300 | | 0.0 | 4.48 | 0.075 | | 60.0 | -4.78 | 0.42 | | $125 \ 196$ | 0.375 | | 0.0 | 4.00 | 0.300 | | 0.0 | 4.52 | 0.000 | 0.00 | 0.0 | -5.74 | 0.52 | | $126 \ 197$ | 0.375 | | 0.0 | 4.06 | 0.300 | | 0.0 | 4.58 | 0.000 | 0.00 | 0.0 | -6.18 | 0.51 | | 127 198 | 0.375 | | 0.0 | 3.89 | 0.275 | | 0.0 | 4.37 | 0.025 | 0.00 | 60.0 | -5.26 | 0.48 | | $128 \ 199$ | 0.375 | | 0.0 | 3.90 | 0.275 | | 0.0 | 4.43 | 0.000 | 0.00 | 0.0 | -4.13 | 0.53 | | 129 200 | 0.375 | | 0.0 | 3.62 | 0.275 | | 0.0 | 4.30 | 0.025 | 0.00 | 30.0 | -2.96 | 0.67 | | 130 201 | 0.375 | | 0.0 | 3.60 | 0.275 | | 0.0 | 4.28 | 0.050 | 0.00 | 27.5 | -1.61 | 0.67 | | 131 202 | 0.375 | | 0.0 | 3.34 | 0.325 | | | 4.17 | | -0.04 | 2.5 | -0.95 | 0.84 | | 132 203 | 0.375 | | 0.0 | 3.36 | 0.325 | | | 4.08 | | -0.04 | 0.0 | -0.20 | 0.72 | | $133 \ 204$ | 0.375 | | 0.0 | 3.10 | 0.325 | | | 3.79 | | -0.04 | 5.0 | 0.20 | 0.69 | | 134 205 | 0.375 | | 0.0 | 3.19 | 0.300 | | | 3.60 | | -0.04 | 0.0 | 0.80 | 0.41 | | $135 \ 206$ | 0.325 | | 0.0 | 2.94 | 0.300 | | | 3.29 | | -0.04 | 0.0 | 0.98 | 0.36 | | $136 \ 207$ | 0.325 | 0.04 | 0.0 | 2.95 | 0.300 | 0.02 | 12.5 | 3.15 | 0.150 | -0.04 | 0.0 | 1.23 | 0.20 | | | '2 (Hf) | | | | | | | | | | | | | | 86 158 | 0.375 | | | 3.86 | 0.300 | | | 4.07 | | -0.02 | 0.0 | -0.92 | 0.21 | | 87 159 | 0.375 | | | 3.71 | 0.300 | | 7.5 | 4.02 | | -0.02 | 0.0 | -0.44 | 0.30 | | 89 161 | 0.400 | | | 3.62 | 0.325 | | 7.5 | 3.84 | 0.175 | 0.00 | 0.0 | 0.43 | 0.22 | | 118 190 | 0.400 | | | 3.65 | 0.350 | | 0.0 | 4.07 | 0.200 | | 55.0 | -2.17 | 0.41 | | | 0.400 | | | 3.65 | 0.350 | | 0.0 | 4.07 | 0.150 | 0.06 | 0.0 | -2.81 | 0.41 | | | 0.200 | | | -2.17 | 0.150 | | | -1.73 | 0.150 | 0.06 | 0.0 | -2.81 | 0.43 | | 119 191 | 0.400 | | | 3.47 | 0.325 | | 0.0 | 4.20 | 0.175 | | 55.0 | -2.93 | 0.73 | | | 0.400 | | | 3.47 | 0.325 | | 0.0 | 4.20 | 0.125 | 0.06 | 0.0 | -2.85 | 0.73 | | | 0.175 | | | -2.93 | 0.150 | 0.04 | 32.5 | -2.32 | 0.125 | 0.06 | 0.0 | -2.85 | 0.53 | | $120 \ 192$ | 0.400 | | | 3.64 | 0.325 | | 0.0 | 4.41 | 0.150 | | 60.0 | -3.24 | 0.76 | | $121 \ 193$ | 0.400 | | | 3.54 | 0.325 | | 0.0 | 4.49 | 0.150 | | 60.0 | -3.77 | 0.95 | | $122 \ 194$ | 0.400 | | | 3.80 | 0.300 | | 0.0 | 4.58 | 0.100 | | 60.0 | -3.97 | 0.78 | | $123 \ 195$ | 0.400 | | | 3.75 | 0.300 | | 0.0 | 4.72 | 0.100 | | 57.5 | -4.91 | 0.97 | | 124 196 | 0.400 | | | 4.02 | 0.300 | | 0.0 | 4.86 | 0.050 | | 60.0 | -5.38 | 0.84 | | $125 \ 197$ | 0.375 | | | 3.99 | 0.300 | | 0.0 | 4.84 | 0.000 | 0.00 | 0.0 | -6.40 | 0.86 | | 126 198 | 0.375 | | 0.0 | 4.05 | 0.300 | | 0.0 | 4.88 | 0.000 | 0.00 | 0.0 | -6.83 | 0.82 | | 127 199 | 0.375 | | 0.0 | 3.87 | 0.275 | | 0.0 | 4.75 | 0.025 | 0.00 | 60.0 | -5.89 | 0.88 | | $128 \ 200$ | 0.375 | 0.06 | 0.0 | 3.90 | 0.275 | 0.02 | 0.0 | 4.75 | 0.000 | 0.00 | 0.0 | -4.79 | 0.85 | | $129 \ 201$ | 0.375 | | 0.0 | 3.62 | 0.250 | | | 4.62 | 0.025 | 0.00 | 55.0 | -3.61 | 1.00 | | $130 \ 202$ | 0.375 | | 0.0 | 3.60 | 0.325 | | | 4.62 | 0.000 | 0.00 | 0.0 | -2.27 | 1.03 | | $131 \ 203$ | 0.375 | | 0.0 | 3.37 | 0.375 | | | 4.45 | | -0.02 | 2.5 | -1.38 | 1.08 | | $132 \ 204$ | 0.375 | | 0.0 | 3.40 | 0.325 | 0.02 | 22.5 | 4.38 | | -0.02 | 0.0 | -0.47 | 0.98 | | $133 \ 205$ | 0.375 | | 0.0 | 3.14 | 0.300 | 0.00 | 25.0 | 4.11 | 0.100 | -0.04 | 5.0 | -0.07 | 0.97 | | $134 \ 206$ | 0.375 | | 0.0 | 3.24 | 0.325 | | | 3.98 | | -0.04 | 0.0 | 0.67 | 0.74 | | $135 \ 207$ | 0.375 | 0.06 | 0.0 | 3.04 | 0.300 | 0.00 | 22.5 | 3.61 | 0.125 | -0.04 | 0.0 | 0.82 | 0.58 | | $136 \ 208$ | 0.375 | 0.08 | 0.0 | 3.13 | 0.300 | 0.00 | 22.5 | 3.44 | 0.150 | -0.04 | 0.0 | 1.23 | 0.30 | | 137 209 | 0.325 | 0.04 | 0.0 | 2.94 | 0.325 | 0.02 | 12.5 | 3.16 | 0.150 | -0.04 | 0.0 | 1.13 | 0.22 | | Z = 7 | '3 (Ta) | | | | | | | | | | | | | | 83 156 | 0.425 | 0.02 | 0.0 | 3.60 | 0.350 | 0.04 | 0.0 | 4.30 | 0.075 | 0.00 | 25.0 | -4.20 | 0.71 | | 84 157 | 0.400 | 0.02 | 0.0 | 4.01 | 0.325 | | 0.0 | 4.31 | 0.075 | 0.00 | 10.0 | -3.29 | 0.31 | | 85 158 | 0.400 | 0.02 | 12.5 | 3.88 | 0.325 | | 0.0 | 4.30 | 0.100 | 0.00 | 0.0 | -2.39 | 0.43 | | 86 159 | 0.400 | 0.02 | 15.0 | 3.78 | 0.325 | 0.02 | 5.0 | 4.27 | 0.125 | -0.02 | 2.5 | -1.53 | 0.48 | | 87 160 | 0.400 | | | 3.59 | 0.300 | | 5.0 | 4.28 | | -0.02 | 0.0 | -1.05 | 0.69 | | 88 161 | 0.400 | | | 3.60 | 0.325 | | 5.0 | 4.15 | 0.150 | 0.00 | 0.0 | -0.52 | 0.55 | | 89 162 | 0.400 | 0.02 | 17.5 | 3.48 | 0.325 | 0.00 | 2.5 | 4.09 | 0.150 | 0.00 | 0.0 | -0.12 | 0.61 | Table (continued) | | eleus | | TATTITI | mum | | | Sa | ddle | | | Mini | mum | | S.H. | |----------------|--------|--------------|--------------|----------|-------|--------------|--------------|----------|-------|--------------|--------------|----------|-------|---------------| | \overline{N} | A | ϵ_2 | ϵ_4 | γ | E | ϵ_2 | ϵ_4 | γ | E | ϵ_2 | ϵ_4 | γ | E | $E_{\rm sad}$ | | | | | | | (MeV) | | | | (MeV) | | | | (MeV) | (MeV) | | Z | 7 = 73 | 3 (Ta) | | | | | | | | | | | |
 | 90 | 163 | 0.425 | 0.04 | 20.0 | 3.55 | 0.325 | 0.00 | 7.5 | 3.99 | 0.175 | 0.00 | 0.0 | 0.21 | 0.44 | | 91 | 164 | 0.400 | 0.02 | 20.0 | 3.53 | 0.325 | 0.00 | 10.0 | 3.83 | 0.175 | 0.02 | 0.0 | 0.42 | 0.30 | | 113 | 186 | 0.400 | -0.02 | 0.0 | 3.99 | 0.375 | 0.00 | 12.5 | 4.25 | 0.200 | 0.10 | 0.0 | -2.65 | 0.26 | | 115 | 188 | 0.400 | 0.00 | 0.0 | 3.77 | 0.375 | 0.02 | 12.5 | 3.97 | 0.175 | 0.08 | 0.0 | -2.75 | 0.20 | | 116 | 189 | 0.400 | 0.00 | 0.0 | 3.75 | 0.350 | 0.04 | 5.0 | 4.01 | 0.175 | 0.08 | 0.0 | -2.79 | 0.26 | | 117 | 190 | 0.400 | 0.00 | 7.5 | 3.49 | 0.350 | 0.06 | 0.0 | 4.10 | 0.150 | 0.06 | 0.0 | -3.27 | 0.62 | | 118 | 191 | 0.400 | 0.00 | 10.0 | 3.44 | 0.325 | 0.06 | 0.0 | 4.24 | 0.175 | 0.04 | 60.0 | -2.67 | 0.81 | | | | 0.400 | 0.00 | 10.0 | 3.44 | 0.325 | 0.06 | 0.0 | 4.24 | 0.150 | 0.06 | 0.0 | -3.50 | 0.81 | | | | 0.175 | 0.04 | 60.0 | -2.67 | 0.150 | 0.04 | 35.0 | -2.34 | 0.150 | 0.06 | 0.0 | -3.50 | 0.33 | | 119 | 192 | 0.400 | 0.00 | 10.0 | 3.25 | 0.325 | 0.06 | 0.0 | 4.43 | 0.175 | 0.04 | 55.0 | -3.39 | 1.19 | | | | 0.400 | 0.00 | | 3.25 | 0.325 | | 0.0 | 4.43 | 0.125 | 0.06 | 0.0 | -3.60 | 1.19 | | | | 0.175 | 0.04 | | -3.39 | 0.150 | 0.04 | 32.5 | -2.92 | 0.125 | 0.06 | 0.0 | -3.60 | 0.48 | | 120 | 193 | 0.400 | | 10.0 | 3.46 | 0.325 | | 0.0 | 4.66 | 0.125 | 0.06 | 0.0 | -3.38 | 1.20 | | | | 0.400 | 0.02 | 10.0 | 3.46 | 0.325 | | 0.0 | 4.66 | 0.150 | | 60.0 | -3.76 | 1.20 | | | | 0.125 | 0.06 | 0.0 | -3.38 | 0.125 | | 37.5 | -3.15 | 0.150 | | 60.0 | -3.76 | 0.23 | | 121 | 194 | 0.400 | 0.02 | | 3.37 | 0.325 | | 0.0 | 4.77 | 0.100 | | 22.5 | -4.07 | 1.40 | | | | 0.400 | 0.02 | | 3.37 | 0.325 | | 0.0 | 4.77 | 0.125 | | 60.0 | -4.24 | 1.40 | | | | 0.100 | 0.04 | | -4.07 | 0.100 | | 37.5 | -3.86 | 0.125 | | 60.0 | -4.24 | 0.21 | | 122 | | 0.400 | 0.02 | | 3.63 | 0.325 | | 0.0 | 4.91 | 0.100 | | 60.0 | -4.55 | 1.27 | | | 196 | 0.400 | 0.02 | | 3.58 | 0.300 | | 0.0 | 4.98 | 0.075 | | 52.5 | -5.45 | 1.40 | | | 197 | 0.400 | 0.02 | 12.5 | 3.84 | 0.300 | | 0.0 | 5.10 | 0.075 | | 60.0 | -5.97 | 1.26 | | | 198 | 0.425 | 0.04 | 15.0 | 3.82 | 0.300 | | 0.0 | 5.09 | 0.025 | | 57.5 | -6.87 | 1.27 | | | 199 | 0.375 | 0.04 | 0.0 | 4.07 | 0.300 | | 0.0 | 5.13 | 0.000 | 0.00 | 0.0 | -7.27 | 1.05 | | | 200 | 0.375 | 0.04 | 0.0 | 3.89 | 0.300 | | 0.0 | 5.00 | 0.025 | | 60.0 | -6.37 | 1.11 | | 128 | | 0.375 | 0.06 | 0.0 | 3.93 | 0.300 | | 0.0 | 4.96 | 0.000 | 0.00 | 0.0 | -5.22 | 1.03 | | | 202 | 0.375 | 0.06 | 0.0 | 3.65 | 0.375 | 0.02 | 30.0 | 4.65 | 0.025 | 0.00 | | -4.09 | 1.00 | | | 203 | 0.375 | 0.06 | 0.0 | 3.62 | 0.375 | | 30.0 | 4.62 | 0.025 | 0.00 | 0.0 | -2.78 | 1.00 | | | 204 | 0.375 | 0.06 | 0.0 | 3.35 | 0.350 | | 32.5 | 4.41 | 0.075 | -0.02 | 0.0 | -1.90 | 1.05 | | | 205 | 0.375 | 0.06 | 0.0 | 3.39 | 0.375 | | 30.0 | 4.44 | | -0.02 | 0.0 | -0.94 | 1.05 | | | 206 | 0.375 | 0.06 | 0.0 | 3.13 | 0.375 | | 30.0 | 4.31 | | -0.02 | 0.0 | -0.51 | 1.18 | | | 207 | 0.375 | 0.08 | 0.0 | 3.19 | 0.300 | | 12.5 | 4.05 | | -0.02 | 0.0 | 0.17 | 0.85 | | | 208 | 0.375 | 0.08 | 0.0 | 2.94 | 0.300 | | 20.0 | 3.87 | | -0.04 | 0.0 | 0.44 | 0.93 | | | 209 | 0.375 | 0.08 | 0.0 | 3.12 | 0.325 | | 12.5 | 3.64 | | -0.02 | 0.0 | 0.97 | 0.52 | | | 210 | 0.375 | 0.08 | 0.0 | 3.06 | 0.300 | 0.02 | 12.5 | 3.40 | 0.150 | -0.04 | 0.0 | 0.85 | 0.35 | | | | 4 (W) | | | | | | | | | | | | | | | 158 | 0.425 | 0.04 | | 3.69 | 0.325 | | 0.0 | 4.60 | 0.075 | | 10.0 | | 0.92 | | | 159 | 0.425 | 0.02 | | 3.82 | 0.325 | | 5.0 | 4.58 | 0.100 | 0.00 | 0.0 | | 0.77 | | | 160 | 0.400 | 0.02 | | 3.84 | 0.300 | | 10.0 | 4.66 | 0.125 | 0.00 | 0.0 | | 0.82 | | | 161 | 0.400 | 0.02 | | 3.63 | 0.300 | | 10.0 | 4.59 | 0.125 | 0.00 | 0.0 | -1.45 | 0.96 | | | 162 | 0.425 | 0.02 | | 3.69 | 0.300 | | 5.0 | 4.52 | 0.150 | 0.00 | 0.0 | -0.89 | 0.83 | | | 163 | 0.425 | 0.04 | | 3.52 | 0.325 | | 0.0 | 4.36 | 0.150 | 0.00 | 0.0 | -0.48 | 0.85 | | | 164 | 0.425 | 0.04 | | 3.54 | 0.350 | | 7.5 | 4.28 | 0.150 | 0.00 | 0.0 | -0.05 | 0.74 | | | 165 | 0.425 | 0.04 | | 3.57 | 0.325 | | 7.5 | 4.16 | 0.175 | 0.02 | 0.0 | 0.23 | 0.59 | | | 187 | | -0.02 | 0.0 | 3.91 | 0.375 | | 0.0 | 4.18 | 0.200 | 0.08 | 0.0 | -2.54 | 0.27 | | | 188 | 0.400 | 0.00 | 0.0 | 3.91 | 0.350 | | | 4.16 | 0.175 | 0.08 | 0.0 | -2.53 | 0.25 | | | 189 | 0.400 | 0.00 | 0.0 | 3.62 | 0.375 | | 0.0 | 4.05 | 0.175 | 0.08 | 0.0 | | 0.43 | | | 190 | 0.400 | 0.00 | 0.0 | 3.60 | 0.350 | | 0.0 | 4.12 | 0.150 | 0.06 | 0.0 | | 0.52 | | | 191 | 0.400 | 0.00 | 5.0 | 3.34 | 0.325 | | 0.0 | 4.19 | 0.150 | 0.06 | 0.0 | | 0.85 | | 118 | 192 | 0.400 | 0.00 | | 3.33 | 0.325 | | 0.0 | 4.52 | 0.175 | | 60.0 | | 1.19 | | | | 0.400 | 0.00 | 10.0 | 3.33 | 0.325 | 0.06 | 0.0 | 4.52 | 0.150 | 0.06 | 0.0 | -3.92 | 1.19 | Table (continued) | Nucleus | | Minimum | | | Sa | ddle | | | Mini | mum | | S.H. | |--------------------|------------------|-----------------------------|----------------|------------------|--------------|--------------|----------------|------------------|--------------|--------------|---------------|---------------------| | \overline{N} A | ϵ_2 | ϵ_4 γ | E | ϵ_2 | ϵ_4 | γ | E | ϵ_2 | ϵ_4 | γ | E | $E_{\rm sad}$ | | | | | (MeV) | | | | (MeV) | | | | (MeV) | (MeV) | | Z = 74 | | | | | | | | | | | | | | 118 192 | 0.175 | 0.04 60.0 | -3.07 | | 0.04 | | -2.84 | 0.150 | 0.06 | 0.0 | -3.92 | 0.23 | | $119 \ 193$ | 0.400 | 0.00 10.0 | 3.13 | 0.325 | | 0.0 | 4.68 | 0.175 | | 55.0 | -3.76 | 1.54 | | | 0.400 | 0.00 10.0 | 3.13 | 0.325 | | 0.0 | 4.68 | 0.125 | 0.06 | 0.0 | -4.19 | 1.54 | | 100 104 | 0.175 | | -3.76 | | 0.04 | | -3.38 | 0.125 | 0.06 | 0.0 | -4.19 | 0.38 | | $120 \ 194$ | 0.400 | 0.00 10.0 | 3.35 | 0.325 | | 0.0 | 4.91 | 0.100 | 0.04 | 0.0 | -4.04 | 1.56 | | | 0.400 | 0.00 10.0 | 3.35 | 0.325 | | 0.0 | 4.91 | 0.150 | | 60.0 | -4.24 | 1.56 | | 101 105 | 0.100 | 0.04 0.0 | -4.04 | | 0.04 | | -3.74 | $0.150 \\ 0.100$ | | 60.0 | -4.24 | 0.30 | | $121 \ 195$ | $0.400 \\ 0.400$ | $0.02 \ 10.0$ $0.02 \ 10.0$ | $3.27 \\ 3.27$ | $0.300 \\ 0.300$ | | $0.0 \\ 0.0$ | $5.01 \\ 5.01$ | 0.100 0.125 | | 22.5
60.0 | -4.73 -4.81 | 1.73 | | | 0.400 0.100 | 0.02 - 10.0 $0.04 - 22.5$ | -4.73 | | 0.00 | | -4.51 | 0.125 0.125 | | 60.0 | -4.81 -4.81 | $1.73 \\ 0.22$ | | 122 196 | 0.100 0.425 | $0.04 \ 22.5$ $0.02 \ 12.5$ | -4.73 3.49 | 0.100 | | 0.0 | -4.51 5.24 | 0.125 0.100 | | 60.0 | -4.81 -5.21 | $\frac{0.22}{1.74}$ | | 122 190 123 197 | 0.425 0.425 | $0.02 \ 12.5$ $0.02 \ 12.5$ | 3.49 3.43 | 0.300 | | 0.0 | 5.24 5.31 | 0.100 0.075 | | 52.5 | -6.14 | 1.74 | | 123 197 124 198 | 0.425 0.425 | $0.02 \ 12.5$ $0.04 \ 12.5$ | 3.74 | 0.300 | | 0.0 | 5.31 | 0.073 | | 60.0 | -6.69 | 1.67 | | 124 196 | 0.425 | 0.04 12.5 | 3.65 | 0.300 | | 0.0 | 5.41 5.39 | 0.000 | 0.02 | 0.0 | -0.09 -7.72 | 1.74 | | 126 200 | 0.425 | 0.04 12.5 | 3.94 | 0.300 | | 0.0 | 5.35 | 0.000 | 0.00 | 0.0 | -8.12 | 1.44 | | 127 201 | 0.425 0.375 | 0.04 12.0 | 3.90 | | 0.02 | | 5.16 | 0.005 | | 60.0 | -7.14 | 1.26 | | 128 202 | 0.375 | 0.06 0.0 | 3.94 | | 0.02 | | 5.02 | 0.000 | 0.00 | 0.0 | | 1.07 | | 129 203 | 0.375 | 0.06 0.0 | 3.66 | | 0.02 | | 4.71 | 0.025 | | | -4.86 | 1.05 | | 130 204 | 0.375 | 0.06 0.0 | 3.63 | | 0.02 | | 4.69 | 0.000 | 0.00 | 0.0 | -3.58 | 1.06 | | 131 205 | 0.375 | 0.06 0.0 | 3.36 | | 0.02 | | 4.47 | 0.050 | 0.00 | 0.0 | -2.49 | 1.10 | | 132 206 | 0.375 | 0.06 0.0 | 3.40 | | 0.02 | | 4.51 | | -0.02 | 0.0 | -1.46 | 1.11 | | 133 207 | 0.375 | 0.06 0.0 | 3.14 | | 0.02 | | 4.36 | | -0.02 | 2.5 | -0.89 | 1.22 | | 134 208 | 0.375 | 0.08 0.0 | 3.21 | | 0.00 | | 4.38 | | -0.02 | 0.0 | -0.20 | 1.17 | | $135 \ 209$ | 0.375 | 0.08 0.0 | 2.95 | | 0.02 | | 3.99 | | -0.02 | 0.0 | 0.26 | 1.04 | | 136 210 | 0.375 | 0.08 0.0 | 3.15 | 0.325 | 0.02 | 12.5 | 3.93 | 0.125 | -0.02 | 0.0 | 0.72 | 0.78 | | 137 211 | 0.375 | 0.08 0.0 | 3.08 | 0.325 | 0.04 | 12.5 | 3.71 | 0.150 | -0.02 | 0.0 | 0.85 | 0.63 | | $138 \ 212$ | 0.350 | 0.06 0.0 | 3.35 | 0.300 | 0.02 | 12.5 | 3.70 | 0.150 | -0.02 | 0.0 | 1.08 | 0.35 | | $139 \ 213$ | 0.350 | 0.06 0.0 | 3.26 | 0.300 | 0.02 | 10.0 | 3.47 | 0.150 | -0.04 | 0.0 | 0.94 | 0.21 | | Z=75 | (Re) | | | | | | | | | | | | | 85 160 | 0.425 | $0.02 \ 12.5$ | 3.39 | 0.375 | 0.02 | 30.0 | 4.72 | 0.100 | 0.00 | 0.0 | -3.84 | 1.33 | | 86 161 | 0.425 | $0.02 \ 15.0$ | 3.51 | 0.375 | 0.02 | 30.0 | 4.76 | 0.125 | 0.00 | 0.0 | -2.80 | 1.25 | | 87 162 | 0.425 | $0.02 \ 15.0$ | 3.38 | 0.375 | 0.02 | 27.5 | 4.69 | 0.125 | 0.00 | 0.0 | -2.25 | 1.31 | | 88 163 | 0.425 | $0.02 \ 17.5$ | 3.37 | 0.375 | 0.02 | 27.5 | 4.65 | 0.125 | 0.00 | 0.0 | -1.58 | 1.28 | | 89 164 | 0.425 | $0.02 \ 17.5$ | 3.24 | 0.375 | 0.02 | 27.5 | 4.53 | 0.150 | 0.00 | 0.0 | -1.11 | 1.29 | | 106 181 | 0.225 | 0.00 57.5 | 0.99 | 0.225 | 0.02 | 42.5 | 1.20 | 0.200 | 0.06 | 0.0 | -1.95 | 0.21 | | 107 182 | 0.225 | 0.00 57.5 | 0.69 | | 0.02 | | 0.95 | 0.200 | 0.06 | 0.0 | -2.40 | 0.26 | | 108 183 | 0.225 | 0.00 57.5 | 0.54 | | 0.02 | | 0.76 | 0.200 | 0.06 | 0.0 | -2.48 | 0.22 | | 111 186 | | -0.02 2.5 | 3.95 | 0.375 | | 0.0 | 4.16 | 0.200 | 0.08 | 0.0 | -2.82 | 0.21 | | $112 \ 187$ | 0.425 | 0.00 0.0 | 3.94 | 0.375 | | 0.0 | 4.19 | 0.200 | 0.08 | 0.0 | -2.58 | 0.24 | | 113 188 | 0.425 | 0.00 0.0 | 3.65 | 0.350 | | 0.0 | 4.08 | 0.175 | 0.08 | 0.0 | -2.99 | 0.43 | | 114 189 | 0.425 | 0.00 2.5 | 3.69 | 0.375 | | 0.0 | 4.12 | 0.175 | 0.08 | 0.0 | -3.01 | 0.43 | | $115 \ 190$ | 0.425 | 0.00 2.5 | 3.47 | 0.350 | | 0.0 | 4.00 | 0.175 | 0.08 | 0.0 | -3.41 | 0.53 | | 116 191 | 0.400 | 0.00 2.5 | 3.35 | 0.325 | | 0.0 | 4.21 | 0.150 | 0.06 | 0.0 | -3.79 | 0.86 | | 117 192 | 0.400 | 0.00 2.5 | 3.10 | 0.325 | | 0.0 | 4.40 | 0.150 | 0.06 | 0.0 | -4.34 | 1.30 | | 118 193 | 0.400 | 0.00 7.5 | 3.09 | 0.325 | | 0.0 | 4.72 | 0.125 | 0.06 | 0.0 | -4.53 | 1.63 | | 119 194 | 0.400 | 0.00 7.5 | 2.91 | 0.325 | | 0.0 | 4.88 | 0.150 | | 57.5 | -4.32 | 1.97 | | | 0.400 | 0.00 7.5 | 2.91 | 0.325 | | 0.0 | 4.88 | 0.125 | 0.06 | 0.0 | -4.91 | 1.97 | | 100 105 | 0.150 | 0.02
57.5 | -4.32 | | 0.04 | | -4.09 | 0.125 | 0.06 | 0.0 | -4.91 | 0.22 | | $120 \ 195$ | 0.425 | 0.02 12.5 | 3.01 | 0.300 | | 0.0 | 5.11 | 0.100 | 0.04 | 0.0 | -4.72 | 2.09 | | | 0.425 | $0.02 \ 12.5$ | 3.01 | 0.300 | 0.06 | 0.0 | 5.11 | 0.150 | 0.02 | 60.0 | -4.86 | 2.09 | Table (continued) | Nucleus | Minimum | | Saddle | | Mini | mum | S.H. | |--------------------|---|--------------------------|--------------------------|----------------|---|---------------------------|---------------------| | \overline{N} A | ϵ_2 ϵ_4 γ | E ϵ_2 | ϵ_4 γ | \overline{E} | ϵ_2 ϵ_4 | γ E | $E_{\rm sad}$ | | | \ | IeV) | | (MeV) | | (MeV) | (MeV) | | Z=75 (I | , | | | | | | | | $120 \ 195$ | | -4.72 0.125 | $0.04 \ 35.0$ | | | 60.0 -4.86 | 0.30 | | $121 \ 196$ | $0.425 \ 0.02 \ 12.5$ | 2.90 0.300 | 0.06 0.0 | | | 57.5 -5.48 | 2.35 | | $122 \ 197$ | $0.425 \ 0.02 \ 12.5$ | 3.15 0.300 | 0.06 0.0 | | | 60.0 -5.94 | 2.31 | | 123 198 | $0.425 \ 0.02 \ 12.5$ | 3.11 0.300 | 0.04 0.0 | | | 50.0 -6.88 | 2.42 | | 124 199 | 0.425 0.04 12.5 | 3.45 0.300 | 0.04 0.0 | | | 60.0 -7.39 | 2.18 | | 125 200 | $0.425 \ 0.04 \ 12.5$ | 3.37 0.375 | 0.00 25.0 | | | 32.5 - 8.26 | 2.18 | | 126 201 | 0.425 0.04 12.5 | 3.65 0.375 | 0.02 25.0 | | .000 0.00 | | 1.79 | | 127 202 | 0.425 0.04 12.5 | 3.71 0.375 | 0.02 27.5 | | | 30.0 -7.71 | 1.44 | | 128 203 | 0.400 0.06 0.0 | 3.84 0.375 | 0.00 27.5 | | .025 0.00 | | 1.13 | | 129 204 | 0.400 0.06 0.0 | 3.58 0.375 | 0.02 27.5 | | | 17.5 -5.43 | 1.02 | | 130 205 | 0.375 0.06 0.0 | 3.61 0.350 | 0.02 32.5 | | .025 0.00 | | 0.95 | | 131 206 | 0.375 0.06 0.0 | 3.35 0.350 | 0.00 32.5 | | .050 0.00 | | 1.05 | | 132 207 | 0.400 0.08 0.0 | 3.36 0.400 | 0.04 17.5 | | 0.075 - 0.02 | 0.0 -2.12 | 1.22 | | 133 208 | 0.400 0.08 0.0 | 3.08 0.375 | 0.02 17.5 | | 0.075 - 0.02 | 2.5 -1.45 | 1.29 | | 134 209 | 0.375 0.08 0.0 | 3.19 0.375 | 0.04 17.5 | | 100 -0.02 | | 1.22 | | 135 210 | 0.375 0.08 0.0 | 2.95 0.325 | 0.02 17.5 | | 100 -0.04 | 0.0 -0.35 | 1.19 | | 136 211 | 0.375 0.08 0.0 | 3.14 0.300 | 0.02 10.0 | | 100 -0.02 | | 1.01 | | 137 212 | 0.375 0.08 0.0 | 3.08 0.300 | 0.02 12.5 | | 125 - 0.02 | 0.0 0.43 | 0.78 | | 138 213 | 0.375 0.08 0.0 | 3.36 0.325 | 0.04 10.0 | | 150 - 0.02 | | 0.49 | | 139 214 | 0.375 0.08 0.0 | 3.36 0.300 | 0.02 10.0 | | 150 -0.02 | 0.0 0.66 | 0.26 | | 157 232 | 0.400 0.00 17.5 | 3.51 0.350 | 0.00 20.0 | | .200 0.06 | 0.0 -2.79 | 0.40 | | 158 233 | 0.425 0.00 17.5 | 3.45 0.350 | -0.02 12.5 | | .200 0.06 | 0.0 -2.90 | 0.45 | | 159 234 | 0.400 0.00 15.0 | | -0.02 7.5 | | 200 0.06 | | 0.34 | | 160 235 | 0.400 0.00 15.0 | 3.11 0.350 | 0.00 0.0 | 3.49 0 | .200 0.08 | 0.0 -3.74 | 0.38 | | Z = 76 (0) | | 0.00 | 0.00.00.5 | 4 71 0 | 100 000 | 0.0 0.40 | 1.00 | | 86 162 | 0.425 0.02 12.5 | 3.39 0.375 | 0.02 32.5 | | .100 0.02 | | 1.32 | | 87 163 | 0.425 0.02 15.0 | 3.33 0.375 | 0.02 32.5 | | .125 0.00 | | 1.36 | | 88 164 | 0.425 0.02 15.0 | 3.38 0.375 | 0.02 32.5 | | .125 0.00 | | 1.28 | | 89 165 | 0.425 0.02 17.5 | 3.25 0.375 | 0.02 32.5 | | .125 0.00 | 0.0 -1.45 | 1.30 | | 104 180 | 0.225 0.00 60.0 | 1.38 0.225 | 0.02 45.0 | | .200 0.04 | 0.0 -0.82 | 0.25 | | 105 181 | 0.225 0.00 60.0 | 1.09 0.225 | 0.02 45.0 | | .200 0.06 | 0.0 -1.23 | 0.31 | | 106 182 | 0.225 0.00 60.0 | 0.82 0.200 | 0.00 45.0 | | 200 0.06 | | 0.40 | | 107 183 | 0.225 0.00 60.0 | 0.53 0.200 | 0.02 45.0 | | 200 0.06 | | 0.42 | | 108 184 | 0.225 0.00 60.0 | 0.36 0.200 | 0.02 45.0 | | 200 0.06 | | 0.32 | | 109 185
111 187 | $0.225 \ 0.00 \ 57.5$
$0.425 \ 0.00 \ 0.0$ | 0.11 0.200 | 0.02 45.0 | | .200 0.08 | | 0.21 | | 111 187 | | 3.84 0.375
3.70 0.375 | $0.00 0.0 \\ 0.00 0.0$ | | 0.08 | | 0.28 | | 112 188 | $0.425 \ 0.00 \ 0.0$ $0.425 \ 0.00 \ 0.0$ | 3.70 0.375
3.41 0.375 | | | 0.08 0.08 0.08 | | $0.43 \\ 0.71$ | | 114 190 | | 3.44 0.350 | | | $\begin{array}{ccc} .175 & 0.08 \\ .150 & 0.06 \end{array}$ | | $0.71 \\ 0.65$ | | 114 190 | | 3.19 0.325 | | | .150 0.06
.150 0.06 | | $0.03 \\ 0.98$ | | 116 191 | $0.400 \ 0.00 \ 0.0$
$0.400 \ 0.00 \ 0.0$ | 3.17 0.300 | | | .150 0.06
.150 0.06 | | 1.28 | | 110 192 | $0.400 \ 0.00 \ 0.0$ $0.400 \ 0.00 \ 2.5$ | 2.92 0.300 | | | 0.06 0.06 0.06 | | 1.78 | | 117 193 | | | | | | | | | 118 194
119 195 | $0.400 \ 0.02 \ 0.0$
$0.425 \ 0.02 \ 10.0$ | 2.97 0.300
2.71 0.300 | $0.06 0.0 \\ 0.06 0.0$ | | .125 0.06
.125 0.06 | | $2.05 \\ 2.50$ | | 120 196 | $0.425 \ 0.02 \ 10.0$ $0.425 \ 0.02 \ 10.0$ | 2.85 0.300 | 0.06 0.0 | | | 60.0 -5.34 | 2.63 | | 120 130 | $0.425 \ 0.02 \ 10.0$ $0.425 \ 0.02 \ 10.0$ | 2.85 0.300
2.85 0.300 | 0.06 0.0 | | 0.02 0.04 | | $\frac{2.03}{2.63}$ | | | | -5.34 0.100 | 0.00 0.0 | | 0.04 0.04 0.04 | | 0.27 | | 121 197 | $0.125 \ 0.02 \ 00.0 - 0.425 \ 0.02 \ 12.5$ | 2.75 0.300 | 0.04 37.3 | | | 60.0 - 5.41 $60.0 - 6.14$ | $\frac{0.27}{2.87}$ | | 121 197 122 198 | $0.425 \ 0.02 \ 12.5$ $0.425 \ 0.02 \ 12.5$ | 3.00 0.300 | 0.04 0.0 | | | 60.0 -6.66 | $\frac{2.87}{2.83}$ | | 123 199 | $0.425 \ 0.02 \ 12.5$ $0.425 \ 0.02 \ 12.5$ | 2.96 0.300 | 0.04 0.0 | | | 55.0 - 7.65 | $\frac{2.83}{2.90}$ | | 140 133 | 0.440 0.04 14.0 | 2.30 0.300 | 0.04 0.0 | 0.01 | .010 0.02 | 00.0 -1.00 | 2.30 | ${\bf Table} \ ({\rm continued})$ | Nucleus | Minimum | | Sac | ldle | | | Mini | mum | | S.H. | |--------------------|-----------------------|---|--------------|----------------|---------------------|------------------|----------------|-------------------|---------------|----------------| | \overline{N} A | | ϵ_2 | ϵ_4 | γ | E | ϵ_2 | ϵ_4 | γ | E | $E_{\rm sad}$ | | | | eV) | | | (MeV) | | | | (MeV) | (MeV) | | Z = 76 (0 | | | | | | | | | | | | 124 200 | | 0.375 | | 25.0 | 5.86 | 0.050 | 0.02 | | -8.24 | 2.56 | | 125 201 | | 0.375 | | 25.0 | 5.62 | 0.000 | 0.00 | 0.0 | -9.25 | 2.39 | | 126 202 | | 0.375 | | 27.5 | 5.51 | 0.000 | 0.00 | 0.0 | -9.61 | 1.98 | | 127 203 | | 0.375 | | 27.5 | 5.20 | 0.025 | 0.00 | | -8.60 | 1.64 | | 128 204 | | 0.400 | | 25.0 | 5.02 | 0.000 | 0.00 | 0.0 | -7.54 | 1.40 | | 129 205 | | 0.400 | | 25.0 | 4.68 | 0.025 | | 60.0 | -6.31 | 1.33 | | 130 206
131 207 | | 0.400 | | $22.5 \\ 20.0$ | $4.66 \\ 4.53$ | $0.000 \\ 0.025$ | $0.00 \\ 0.00$ | 0.0 | -5.04 | $1.25 \\ 1.39$ | | 131 207 132 208 | | $\begin{array}{ccc} 3.15 & 0.425 \\ 3.16 & 0.375 \end{array}$ | | 20.0 | $\frac{4.55}{4.60}$ | 0.025 0.050 | 0.00 | $0.0 \\ 5.0$ | -3.94 -2.81 | 1.39 1.43 | | 132 208 | | 0.376 0.376 0.375 | | 17.5 | $\frac{4.60}{4.45}$ | | -0.00 | 0.0 | -2.81 -2.02 | $1.45 \\ 1.56$ | | 134 210 | | 0.375 0.375 0.375 | | 17.5 17.5 | $4.45 \\ 4.56$ | | -0.02 -0.02 | 0.0 | -2.02 -1.23 | 1.56 | | 134 210 | | 0.376 0.376 0.300 | | 17.5 12.5 | 4.36 | | -0.02 -0.02 | $\frac{0.0}{2.5}$ | -1.23 -0.80 | 1.30 1.44 | | 136 212 | | 0.300 0.275 | | 12.0 10.0 | 4.26 | | -0.02 -0.02 | $\frac{2.5}{2.5}$ | -0.30 -0.16 | 1.44 1.14 | | 130 212 | | $0.12 \qquad 0.276 \\ 0.300$ | | 12.5 | 4.20 4.05 | | -0.02 -0.04 | 0.0 | -0.10 0.19 | 1.14 | | 138 214 | | 0.300 0.300 0.325 | | 10.0 | 4.03 4.07 | | -0.04 | 0.0 | 0.19 0.58 | 0.56 | | 139 215 | | 3.34 0.300 | | 10.0 | 3.83 | | -0.04 | 0.0 | 0.62 | 0.49 | | 156 232 | | 3.93 0.350 | | 20.0 | 4.20 | 0.200 | 0.02 | 0.0 | -1.79 | 0.28 | | 157 233 | | 3.56 0.350 | | 17.5 | 4.15 | 0.200 | 0.06 | 0.0 | -2.29 | 0.59 | | 158 234 | | | -0.02 | | 4.11 | 0.200 | 0.06 | 0.0 | -2.40 | 0.62 | | 159 235 | | | -0.02 | | 3.70 | 0.200 | 0.06 | 0.0 | -2.97 | 0.48 | | 160 236 | | 0.325 0.325 | | | 3.65 | 0.200 | 0.08 | 0.0 | -3.18 | 0.44 | | $Z=77 \ (1)$ | | 0.020 | 0.02 | 0.0 | 0.00 | 0.200 | 0.00 | 0.0 | 0.10 | 0.11 | | 87 164 | | 2.98 0.400 | 0.02 | 32.5 | 4.45 | 0.100 | 0.00 | 0.0 | -3.64 | 1.47 | | 88 165 | | 3.19 0.400 | | 32.5 | 4.40 | 0.125 | 0.00 | 15.0 | -2.75 | 1.21 | | 105 182 | | 0.76 0.200 | | 45.0 | 1.00 | 0.200 | 0.04 | 0.0 | -0.90 | 0.24 | | 106 183 | | 0.48 0.200 | | 45.0 | 0.79 | 0.200 | 0.06 | 0.0 | -1.24 | 0.31 | | 107 184 | | 0.19 0.200 | | 45.0 | 0.52 | 0.200 | 0.06 | 0.0 | -1.69 | 0.33 | | 108 185 | | 0.01 0.175 | | 45.0 | 0.21 | 0.200 | 0.06 | 0.0 | -1.77 | 0.21 | | 110 187 | | 3.65 0.375 | | 0.0 | 3.89 | 0.175 | 0.06 | 0.0 | -2.08 | 0.24 | | 111 188 | | 0.350 | | 0.0 | 3.89 | 0.175 | 0.06 | 0.0 | -2.33 | 0.47 | | 112 189 | | 3.27 0.375 | | 0.0 | 3.97 | 0.150 | 0.06 | 0.0 | -2.39 | 0.70 | | 113 190 | | 2.99 0.350 | | 0.0 | 3.88 | 0.150 | 0.06 | 2.5 | -2.90 | 0.89 | | 114 191 | | 0.325 | | 0.0 | 4.08 | 0.150 | 0.06 | 0.0 | -3.18 | 1.06 | | $115 \ 192$ | 0.400 0.00 0.0 | 2.84 0.325 | 0.06 | 0.0 | 4.30 | 0.150 | 0.06 | 20.0 | -3.77 | 1.46 | | 116 193 | 0.400 0.00 0.0 | 2.81 0.300 | 0.06 | 0.0 | 4.64 | 0.125 | 0.06 | 0.0 | -4.30 | 1.83 | | 117 194 | 0.400 0.00 0.0 | 2.57 0.300 | 0.06 | 0.0 | 4.88 | 0.125 | 0.06 | 10.0 | -4.95 | 2.32 | | $118 \ 195$ | 0.400 0.02 0.0 | 2.59 0.300 | 0.06 | 0.0 | 5.19 | 0.125 | 0.06 | 0.0 | -5.42 | 2.60 | | $119 \ 196$ | $0.425 \ 0.02 \ 7.5$ | 0.300 | 0.06 | 0.0 | 5.41 | 0.100 | 0.04 | 0.0 | -5.91 | 3.04 | | $120 \ 197$ | $0.425 \ 0.02 \ 7.5$ | 2.52 0.300 | 0.06 | 0.0 | 5.67 | 0.125 | 0.02 | 60.0 | -6.21 | 3.15 | | $121 \ 198$ | $0.425 \ 0.02 \ 10.0$ | 2.46 0.300 | 0.06 | 0.0 | 5.81 | 0.100 | 0.02 | 60.0 | -7.06 | 3.35 | | $122 \ 199$ | $0.425 \ 0.02 \ 10.0$ | 0.375 | 0.00 | 25.0 | 5.94 | 0.075 | 0.02 | 60.0 | -7.59 | 3.23 | | $123 \ 200$ | 0.425 0.02 10.0 | 0.375 | 0.00 | 25.0 | 5.81 | 0.075 | 0.02 | 57.5 | -8.56 | 3.10 | | $124 \ 201$ | 0.425 0.04 10.0 | 0.375 | 0.00 | 27.5 | 5.76 | 0.050 | 0.02 | 60.0 | -9.15 | 2.78 | | $125 \ \ 202$ | | 0.375 | | 27.5 | 5.53 | 0.000 | 0.00 | 0.0 | -10.14 | 2.60 | | $126 \ 203$ | | 0.375 | | 27.5 | 5.36 | 0.000 | 0.00 | 0.0 | -10.49 | 2.15 | | $127 \ \ 204$ | 0.400 0.04 0.0 | 0.375 | 0.00 | 27.5 | 5.06 | 0.025 | 0.00 | 60.0
| -9.46 | 1.81 | | $128 \ \ 205$ | | 0.400 | | 25.0 | 4.94 | 0.000 | 0.00 | 0.0 | -8.42 | 1.60 | | $129 \ 206$ | | 3.08 0.400 | | 25.0 | 4.61 | 0.025 | 0.00 | 60.0 | -7.17 | 1.54 | | $130 \ 207$ | | 0.400 | | 22.5 | 4.64 | 0.000 | 0.00 | 0.0 | -5.91 | 1.51 | | 131 208 | 0.400 0.06 0.0 | 2.89 0.425 | 0.04 | 20.0 | 4.59 | 0.025 | 0.00 | 57.5 | -4.78 | 1.70 | ${\bf Table} \ ({\rm continued})$ | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | Nucleus | Minimum | 1 | | Sad | ldle | | | Mini | mum | | S.H. | |--|---------------|------------------------------------|-------|--------------|--------------|----------|-------|--------------|--------------|----------|--------|-------| | | N A | ϵ_2 ϵ_4 γ | | ϵ_2 | ϵ_4 | γ | | ϵ_2 | ϵ_4 | γ | | | | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | (MeV) | | | | (MeV) | | | | (MeV) | (MeV) | | 133 210 | | ` , | 2.04 | 0.400 | 0.04 | | | 0.000 | 0.00 | 0.0 | 0.04 | 4 =0 | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | | | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | | | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | | | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | | | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | | | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | | | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 87 165 0.425 0.04 0.0 2.52 0.375 0.00 32.5 4.26 0.100 0.00 6.0 -4.28 1.74 88 166 0.425 0.04 0.0 2.92 0.375 0.00 32.5 4.24 0.100 0.00 6.0.0 45.0 -3.30 1.32 89 167 0.425 0.04 10.0 3.66 0.375 0.00 32.5 4.11 0.125 0.00 30.0 -2.46 1.05 90 168 0.425 0.04 12.5 3.25 0.375 0.00 60.0 2.84 0.125 0.00 22.5 -1.78 0.76 94 172 0.325 0.02 60.0 2.62 0.275 0.00 60.0 2.84 0.125 0.02 20.0 0.38 0.27 96 174 0.325 0.02 60.0 2.83 0.275 0.00 60.0 3.08 0.150 0.02 20.0 0.61 0.25 97 175 0.325 0.04 60.0 2.85 0.275 0.00 60.0 3.08 0.225 0.00 0.0 0.0 9.9 0.29 98 176 0.325 0.04 60.0 2.73 0.275 0.00 60.0 3.08 0.225 0.00 0.0 0.0 9.4 0.43 0.43 0.43 0.35 0.00 0.0 0.84 0.23 111 189 0.425 0.00 0.0 3.19 0.375 0.02 0.0 0.0 3.9 0. | | | 5.25 | 0.525 | 0.02 | 0.0 | 5.11 | 0.110 | 0.00 | 0.0 | 2.30 | 0.02 | | 88 166 0.425 0.04 0.0 2.92 0.375 0.00 32.5 4.24 0.100 0.00 45.0 -3.30 1.32 89 167 0.425 0.04 12.5 3.06 0.375 0.00 32.5 4.11 0.125 0.00 30.0 -2.46 1.05 1.05 90 168 0.425 0.04 12.5 3.25 0.375 0.00 32.5 4.01 0.125 0.00 22.5 -1.78 0.76 0.76 94 172 0.325 0.00 60.0 2.62 0.02 2.70 0.275 0.00 60.0 2.84 0.125 0.02 15.0 0.15 0.22 0.15 0.22 95 173 0.325 0.02 60.0 2.70 0.275 0.00 60.0 2.97 0.150 0.02 20.0 0.38 0.275 0.00 60.0 2.97 0.150 0.02 20.0 0.61 0.25 96 174 0.325 0.02 60.0 2.80 0.275 0.00 60.0 3.08 0.150 0.02 20.0 0.61 0.25 97 175 0.325 0.02 60.0 2.80 0.275 0.00 60.0 3.08 0.150 0.02 20.0 0.79 0.29 98 176 0.325 0.04 60.0 2.85 0.275 0.00 60.0 3.08 0.255 0.00 0.0 0.0 0.0 0.84 0.23 99 177 0.325 0.04 60.0 2.73 0.275 0.00 60.0 3.01 0.225 0.00 0.0 0.72 0.28 110 188 0.400 0.00 0.0 3.48 0.350 0.02 0.0 3.79 0.075 0.06 10.0 -1.45 0.31 111 189 0.425 0.00 0.0 2.76 0.325 0.06 0.0 3.83 0.175 0.06 15.0 -1.75 0.63 113 191 0.425 0.02 0.0 2.75 0.00 0.0 0.0 3.76 0.025 0.00 0.0 3.83 0.175 0.06 15.0 -1.75 0.323 0.30 115 193 0.425 0.02 0.0 2.46 0.030 0.06 0.0 4.24 0.150 0.04 30.0 -3.32 1.49 117 195 0.425 0.02 0.0 2.30 0.026 0.0 2.30 0.006 0.0 5.18 0.125 0.04 30.0 -3.84 2.07 116 194 0.425 0.02 0.0 2.5 2.5 2.11 0.300 0.06 0.0 5.18 0.125 0.02 60.0 -6.20 3.54 | | | 2 52 | 0.375 | 0.00 | 22.5 | 4.26 | 0.100 | 0.00 | 60 O | 1 28 | 1 74 | | 89 167 0.425 0.04 1.0.0 3.06 0.375 0.00 32.5 4.11 0.125 0.00 30.0 -2.46 1.05 90 168 0.425 0.04 12.5 3.25 0.375 0.00 32.5 4.01 0.125 0.00 22.5 -1.78 0.76 94 172 0.325 0.02 60.0 2.77 0.02 0.00 60.0 2.84 0.125 0.02 20.0 0.15 0.02 20.0 0.61 0.22 96 174 0.325 0.02 60.0 2.83 0.275 0.00 60.0 3.08 0.150 0.02 0.0 0.61 0.25 98 176 0.325 0.04 60.0 2.85 0.275 0.00 60.0 3.01 0.225 0.00 0.0 0.23 99 177 0.325 0.04 60.0 2.75 0.00 60.0 3.01 0.225 0.00 | | | | | | | | | | | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | | | | | 97 175 0.325 0.02 60.0 2.80 0.275 0.00 60.0 3.10 0.150 0.02 20.0 0.79 0.23 98 176 0.325 0.04 60.0 2.85 0.275 0.00 60.0 3.01 0.225 0.00 0.0 0.84 0.23 19 177 0.325 0.04 60.0 2.73 0.275 0.00 3.01 0.225 0.00 0.0 0.72 0.28 110 188 0.400 0.00 0.0 3.48 0.350 0.02 0.0 3.79 0.175 0.06 10.0 -1.45 0.31 111 189 0.425 0.00 0.0 2.76 0.325 0.06 0.0 3.91 0.150 0.04 2.75 -2.74 1.15 114 192 0.425 0.02 0.0 2.76 0.300 0.06 0.0 4.53 0.150 0.04 2.75 -4.97 | | | | | | | | | | | | | | 98 176 0.325 0.04 60.0 2.85 0.275 0.00 60.0 3.08 0.225 0.00 0.0 0.0 0.0 0.84 0.23 99 177 0.325 0.04 60.0 2.73 0.275 0.00 60.0 3.01 0.225 0.00 0.0 0.0 0.0 0.72 0.28 110 188 0.400 0.00 0.0 3.48 0.350 0.02 0.0 3.79 0.175 0.06 10.0 -1.45 0.31 111 189 0.425 0.00 0.0 3.19 0.375 0.02 0.0 3.83 0.175 0.06 15.0 -1.75 0.63 113 191 0.425 0.00 0.0 2.76 0.325 0.06 0.0 3.91 0.150 0.04 27.5 -2.74 1.15 114 192 0.425 0.02 0.0 2.0 2.46 0.300 0.06 0.0 4.24 0.150 0.04 30.0 -3.23 1.49 115 193 0.425 0.02 0.0 2.46 0.300 0.06 0.0 4.23 0.150 0.04 30.0 -3.84 2.07 116 194 0.425 0.02 0.0 2.0 2.0 0.0 2.46 0.300 0.06 0.0 4.92 0.125 0.04 27.5 -4.30 2.47 117 195 0.425 0.02 0.0 2.0 0.0 2.20 0.300 0.300 0.66 0.0 5.18 0.125 0.04 27.5 -4.97 2.98 118 196 0.400 0.02 0.0 2.30 0.300 0.300 0.66 0.0 5.47 0.125 0.02 60.0 -5.46 3.18 119 197 0.425 0.02 5.0 2.31 0.300 0.66 0.0 5.47 0.125 0.02 60.0 -6.20 3.54 120 198 0.425 0.02 7.5 2.31 0.300 0.06 0.0 5.94 0.100 0.02 60.0 -6.86 3.63 121 199 0.425 0.02 7.5 2.31 0.375 0.00 25.0 5.91 0.100 0.02 60.0 -7.80 3.60 122 200 0.425 0.04 7.5 2.37 0.375 0.00 27.5 5.83 0.000 0.00 0.00 0.00 0.00 0.00 -1.122 2.35 125 233 0.425 0.04 7.5 2.3 | | | | | | | | | | | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | | | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | | | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | | | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | | | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | | | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | | | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | | | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | | | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | | | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | | | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | | | 0.00 | 27.5 | | 0.050 | | | -9.92 | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $125 \ 203$ | $0.425 \ 0.04 \ 7.5$ | 2.73 | 0.375 | 0.00 | 27.5 | 5.53 | 0.000 | 0.00 | 0.0 | -10.89 | 2.79 | | 128 206 0.425 0.06 0.0 3.04 0.375 0.00 25.0 4.97 0.000 0.00 0.0 0.0 -9.14 1.93 129 207 0.400 0.06 0.0 2.78 0.400 0.02 22.5 4.71 0.025 0.00 60.0 -7.88 1.93 130 208 0.400 0.06 0.0 2.84 0.400 0.02 22.5 4.76 0.000 0.00 0.0 0.0 0.0 -6.62 1.92 131 209 0.400 0.06 0.0 2.59 0.425 0.04 20.0 4.63 0.025 0.00 0.0 -5.49 2.04 132 210 0.425 0.08 0.0 2.73 0.375 0.02 20.0 4.69 0.025 0.00 25.0 -4.34 1.96 133 211 0.400 0.08 0.0 2.41 0.350 0.02 17.5 4.63 0.050 0.00 55.0 -3.43 2.21 134 212 0.400 0.08 0.0 2.53
0.350 0.02 20.0 4.66 0.075 -0.02 0.0 -2.44 2.13 135 213 0.400 0.08 0.0 2.44 0.300 0.00 17.5 4.33 0.075 -0.02 2.5 -1.79 1.89 | $126 \ 204$ | $0.425 \ 0.04 \ 7.5$ | 3.02 | 0.400 | 0.00 | 25.0 | 5.37 | 0.000 | 0.00 | 0.0 | -11.22 | 2.35 | | 129 207 0.400 0.06 0.0 2.78 0.400 0.02 22.5 4.71 0.025 0.00 60.0 -7.88 1.93 130 208 0.400 0.06 0.0 2.84 0.400 0.02 22.5 4.76 0.000 0.00 0.0 0.0 -6.62 1.92 131 209 0.400 0.06 0.0 2.59 0.425 0.04 20.0 4.63 0.025 0.00 0.0 0.0 -5.49 2.04 132 210 0.425 0.08 0.0 2.73 0.375 0.02 20.0 4.69 0.025 0.00 25.0 -4.34 1.96 133 211 0.400 0.08 0.0 2.41 0.350 0.02 17.5 4.63 0.050 0.05 0.00 55.0 -3.43 2.21 134 212 0.400 0.08 0.0 2.53 0.350 0.02 20.0 4.66 0.075 -0.02 0.0 -2.44 2.13 135 213 0.400 0.08 0.0 2.44 0.300 0.00 17.5 4.33 0.075 -0.02 2.5 -1.79 1.89 | $127 \ \ 205$ | $0.400 \ 0.04 \ 0.0$ | 2.95 | 0.400 | 0.00 | 25.0 | 5.11 | 0.025 | 0.00 | 60.0 | -10.18 | 2.16 | | 130 208 0.400 0.06 0.0 2.84 0.400 0.02 22.5 4.76 0.000 0.00 0.0 0.0 -6.62 1.92 131 209 0.400 0.06 0.0 2.59 0.425 0.04 20.0 4.63 0.025 0.00 0.0 -5.49 2.04 132 210 0.425 0.08 0.0 2.73 0.375 0.02 20.0 4.69 0.025 0.00 25.0 -4.34 1.96 133 211 0.400 0.08 0.0 2.41 0.350 0.02 17.5 4.63 0.050 0.05 0.00 55.0 -3.43 2.21 134 212 0.400 0.08 0.0 2.53 0.350 0.02 20.0 4.66 0.075 -0.02 0.0 -2.44 2.13 135 213 0.400 0.08 0.0 2.44 0.300 0.00 17.5 4.33 0.075 -0.02 2.5 -1.79 1.89 | $128 \ 206$ | $0.425 \ 0.06 \ 0.0$ | 3.04 | 0.375 | 0.00 | 25.0 | 4.97 | 0.000 | 0.00 | 0.0 | -9.14 | 1.93 | | 131 209 0.400 0.06 0.0 2.59 0.425 0.04 20.0 4.63 0.025 0.00 0.0 -5.49 2.04 132 210 0.425 0.08 0.0 2.73 0.375 0.02 20.0 4.69 0.025 0.00 25.0 -4.34 1.96 133 211 0.400 0.08 0.0 2.41 0.350 0.02 17.5 4.63 0.050 0.05 0.00 55.0 -3.43 2.21 134 212 0.400 0.08 0.0 2.53 0.350 0.02 20.0 4.66 0.075 -0.02 0.0 -2.44 2.13 135 213 0.400 0.08 0.0 2.44 0.300 0.00 17.5 4.33 0.075 -0.02 2.5 -1.79 1.89 | $129 \ 207$ | $0.400 \ 0.06 \ 0.0$ | 2.78 | 0.400 | 0.02 | 22.5 | 4.71 | 0.025 | 0.00 | 60.0 | -7.88 | 1.93 | | 132 210 0.425 0.08 0.0 2.73 0.375 0.02 20.0 4.69 0.025 0.00 25.0 -4.34 1.96 133 211 0.400 0.08 0.0 2.41 0.350 0.02 17.5 4.63 0.050 0.05 0.00 55.0 -3.43 2.21 134 212 0.400 0.08 0.0 2.53 0.350 0.02 20.0 4.66 0.075 -0.02 0.0 -2.44 0.075 -0.02 0.0 -2.44 2.13 135 213 0.400 0.08 0.0 2.44 0.300 0.00 17.5 4.33 0.075 -0.02 2.5 -1.79 1.89 | $130 \ 208$ | $0.400 \ 0.06 \ 0.0$ | 2.84 | 0.400 | 0.02 | 22.5 | 4.76 | 0.000 | 0.00 | 0.0 | -6.62 | 1.92 | | 133 211 0.400 0.08 0.0 2.41 0.350 0.02 17.5 4.63 0.050 0.00 55.0 -3.43 2.21 134 212 0.400 0.08 0.0 2.53 0.350 0.02 20.0 4.66 0.075 -0.02 0.0 -2.44 2.13 135 213 0.400 0.08 0.0 2.44 0.300 0.00 17.5 4.33 0.075 -0.02 2.5 -1.79 1.89 | $131 \ 209$ | $0.400 \ 0.06 \ 0.0$ | 2.59 | 0.425 | 0.04 | 20.0 | 4.63 | 0.025 | 0.00 | 0.0 | -5.49 | 2.04 | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $132 \ 210$ | $0.425 \ 0.08 \ 0.0$ | 2.73 | 0.375 | 0.02 | 20.0 | 4.69 | 0.025 | 0.00 | 25.0 | -4.34 | 1.96 | | $135 \ 213 \qquad 0.400 \ 0.08 \ 0.0 2.44 \qquad 0.300 0.00 \ 17.5 4.33 \qquad 0.075 \ -0.02 \ 2.5 \ -1.79 \qquad 1.89$ | $133 \ 211$ | $0.400 \ 0.08 \ 0.0$ | 2.41 | 0.350 | | | 4.63 | 0.050 | 0.00 | 55.0 | -3.43 | 2.21 | | | $134 \ 212$ | $0.400 \ 0.08 \ 0.0$ | 2.53 | 0.350 | 0.02 | 20.0 | 4.66 | 0.075 | -0.02 | 0.0 | -2.44 | 2.13 | | <u>136 214 0.400 0.08 0.0 2.81 0.300 0.00 15.0 4.30 0.100 -0.02 2.5 -1.10 1.48</u> | | 0.400 0.08 0.0 | 2.44 | 0.300 | 0.00 | 17.5 | 4.33 | 0.075 | -0.02 | 2.5 | -1.79 | 1.89 | | | 136 214 | 0.400 0.08 0.0 | 2.81 | 0.300 | 0.00 | 15.0 | 4.30 | 0.100 | -0.02 | 2.5 | -1.10 | 1.48 | Table (continued) | Nuc | leus | | Min | imum | L | | Sad | ldle | | | Mini | mum | | S.H. | |----------------|----------------|--------------|--------------|----------|-------|--------------|--------------|----------|-------|--------------|--------------|----------|--------|---------------| | \overline{N} | \overline{A} | ϵ_2 | ϵ_4 | γ | E | ϵ_2 | ϵ_4 | γ | E | ϵ_2 | ϵ_4 | γ | E | $E_{\rm sad}$ | | | | | | | (MeV) | | | | (MeV) | | | | (MeV) | (MeV) | | | | 8 (Pt) | | | | | | | | | | | | | | 137 | | 0.375 | | 0.0 | 2.83 | 0.300 | | 12.5 | 4.08 | | -0.02 | 2.5 | -0.68 | 1.25 | | 138 | | 0.375 | | 0.0 | 3.16 | 0.325 | 0.04 | | 4.22 | | -0.02 | 0.0 | -0.15 | 1.06 | | | 217 | 0.375 | | 0.0 | 3.20 | 0.300 | | 10.0 | 3.97 | | -0.04 | 0.0 | 0.11 | 0.77 | | 140 | | 0.375 | | 0.0 | 3.61 | 0.300 | 0.02 | 7.5 | 4.06 | | -0.04 | 0.0 | 0.46 | 0.45 | | | 219 | 0.375 | | 0.0 | 3.68 | 0.325 | 0.04 | 2.5 | 3.90 | | -0.04 | 0.0 | 0.39 | 0.22 | | | 232 | 0.275 | | | 2.10 | 0.225 | 0.00 | | 2.42 | 0.225 | 0.04 | 0.0 | -0.97 | 0.32 | | | 233 | 0.275 | | | 1.84 | 0.225 | 0.00 | | 2.17 | 0.225 | 0.04 | 0.0 | -1.22 | 0.33 | | | 238 | 0.400 | 0.00 | 12.5 | 3.41 | 0.325 | -0.02 | 0.0 | 3.87 | 0.175 | 0.06 | 0.0 | -2.40 | 0.46 | | | | 9 (Au) | 0.04 | - 0 | 0.51 | 0.400 | 0.00 | 20.0 | 0.04 | 0.100 | 0.00 | | 0.50 | 1.00 | | | 168 | 0.425 | | | 2.51 | 0.400 | | 30.0 | 3.84 | 0.100 | 0.02 | | -3.70 | 1.33 | | | 169 | 0.425 | | | 2.85 | 0.425 | | 32.5 | 3.82 | 0.100 | 0.02 | | -2.87 | 0.97 | | 91 | 170 | 0.425 | | | 2.90 | 0.400 | 0.00 | | 3.64 | 0.325 | 0.00 | | 1.69 | 0.74 | | | | 0.425 | | | 2.90 | 0.400 | 0.00 | | 3.64 | 0.125 | 0.02 | | -2.06 | 0.74 | | 0.0 | . . . | 0.325 | | | 1.69 | | -0.02 | | 1.98 | 0.125 | 0.02 | | -2.06 | 0.29 | | 92 | 171 | 0.425 | | | 3.17 | 0.425 | 0.02 | | 3.71 | 0.325 | 0.00 | | 1.92 | 0.54 | | | | 0.425 | | | 3.17 | 0.425 | 0.02 | | 3.71 | 0.100 | 0.02 | | -1.42 | 0.54 | | 0.0 | 4=0 | 0.325 | | | 1.92 | | -0.02 | | 2.29 | 0.100 | 0.02 | | -1.42 | 0.37 | | | 172 | 0.325 | | | 1.98 | | -0.02 | | 2.50 | 0.125 | 0.02 | | -0.96 | 0.51 | | | 173 | 0.325 | | | 2.19 | | -0.02 | | 2.75 | 0.125 | 0.02 | | -0.54 | 0.56 | | | 174 | 0.325 | | | 2.28 | | -0.02 | | 2.88 | 0.125 | 0.02 | | -0.16 | 0.59 | | | 175 | 0.325 | | | 2.47 | | -0.02 | | 3.00 | 0.125 | 0.02 | | 0.15 | 0.53 | | | 176 | 0.325 | | | 2.44 | 0.325 | 0.04 | | 2.87 | 0.150 | 0.02 | | 0.33 | 0.43 | | | 177 | 0.350 | | | 2.49 | 0.325 | 0.04 | | 2.96 | 0.150 | 0.02 | | 0.48 | 0.47 | | 99 | 178 | 0.375 | | | 2.35 | 0.350 | 0.04 | | 2.90 | 0.350 | 0.04 | | 2.36 | 0.54 | | | | 0.375 | | | 2.35 | 0.325 | | 30.0 | 2.60 | 0.150 | 0.02 | | 0.59 | 0.25 | | 400 | | 0.350 | | | 2.36 | 0.350 | | 47.5 | 2.90 | 0.150 | 0.02 | | 0.59 | 0.54 | | 100 | 179 | 0.375 | | | 2.51 | 0.275 | | 60.0 | 2.84 | 0.350 | 0.04 | | 2.38 | 0.33 | | | | 0.375 | | | 2.51 | 0.325 | | 32.5 | 2.76 | 0.150 | 0.02 | | 0.62 | 0.25 | | 404 | 400 | 0.350 | | | 2.38 | 0.275 | | 60.0 | 2.84 | 0.150 | 0.02 | | 0.62 | 0.45 | | 101 | | 0.350 | | | 2.29 | 0.275 | | 60.0 | 2.65 | 0.150 | 0.02 | | 0.62 | 0.36 | | 102 | | 0.350 | | | 2.29 | 0.300 | | 60.0 | 2.52 | 0.150 | 0.02 | | 0.54 | 0.23 | | | 182 | 0.350 | | | 2.10 | 0.300 | | 60.0 | 2.32 | 0.175 | 0.02 | | 0.41 | 0.22 | | 109 | | 0.400 | | | 3.08 | 0.375 | 0.02 | | 3.34 | 0.150 | 0.04 | | -1.23 | 0.26 | | 110 | | 0.425 | | 0.0 | 3.03 | 0.350 | 0.04 | 0.0 | 3.42 | 0.150 | 0.04 | | -1.61 | 0.40 | | | 193 | 0.425 | | 0.0 | 2.23 | 0.300 | 0.04 | 7.5 | 4.40 | 0.125 | 0.04 | | -3.78 | 2.16 | | | 194 | 0.425 | | 0.0 | 1.96 | 0.300 | 0.04 | 2.5 | 4.68 | 0.125 | 0.04 | | -4.41 | 2.72 | | 116 | | 0.425 | | 0.0 | 1.94 | 0.300 | 0.06 | 0.0 | 5.03 | 0.125 | 0.04 | | -4.92 | 3.08 | | | 196 | 0.425 | | 0.0 | 1.70 | 0.300 | 0.06 | 0.0 | 5.27 | 0.125 | 0.02 | | -5.61 | 3.57 | | | 197 | 0.425 | | 0.0 | 1.75 | 0.300 | 0.06 | 0.0 | 5.57 | 0.125 | 0.02 | | -6.29 | 3.82 | | | 198 | 0.425 | | 0.0 | 1.60 | 0.375 | 0.00 | | 5.64 | 0.100 | 0.02 | | -7.07 | 4.04 | | | 199 | 0.425 | | 0.0 | 1.80 | 0.375 | 0.00 | | 5.77 | 0.100 | 0.02 | | -7.78 | 3.97 | | | 200 | 0.425 | | 0.0 | 1.88 | 0.400 | 0.00 | | 5.74 | 0.100 | 0.02 | | -8.69 | 3.86 | | 122 | | 0.425 | | 5.0 | 2.09 | 0.400 | 0.00 | | 5.78 | 0.075 | 0.02 | | -9.33 | 3.69 | | | 202 | 0.425 | | 5.0 | 2.08 | 0.400 | 0.00 | | 5.65 | 0.075 | | | -10.25 | 3.57 | | | 203 | 0.425 | | 5.0 | 2.33 | 0.375 | 0.00 | | 5.60 | 0.050 | | | -10.86 | 3.26 | | | 204 | 0.425 | | 7.5 | 2.33 | 0.400 | | 30.0 | 5.38 | 0.000 | 0.00 | | -11.87 | 3.05 | | | 205 | 0.425 | | 5.0 | 2.60 | 0.400 | | 25.0 | 5.21 | 0.000 | 0.00 | | -12.19 | 2.61 | | | 206 | 0.425 | | 2.5 | 2.51 | 0.400 | 0.00 | | 4.98 | 0.025 | | | -11.14 | 2.47 | | | 207 | 0.425 | | 0.0 | 2.60 | 0.400 | 0.02 | | 4.89 | 0.000 | 0.00 | | -10.10 | 2.29 | | 129 | 208 | 0.400 | 0.06 | 0.0 | 2.43 | 0.400 | 0.02 | 22.5 | 4.65 | 0.025 | 0.00 | 0.00 | -8.83 | 2.21 | ${\bf Table} \ ({\rm continued})$ | Nuc | leus | | Minir | num | | | Sad | dle | | | Mini | mum | | S.H. | |----------------|------|--------------|--------------|----------|-------|--------------|--------------|----------|---------------------------------------|--------------|--------------|----------|-------|---------------| | \overline{N} | A | ϵ_2 | ϵ_4 | γ | E | ϵ_2 | ϵ_4 | γ | E | ϵ_2 | ϵ_4 | γ | E | $E_{\rm sad}$ | | | | | | | (MeV) | | | | (MeV) | | | | (MeV) | (MeV) | | | | (Au) | | | | | | | | | | | | | | 130 | | 0.400 | 0.06 | 0.0 | 2.49 | 0.400 | 0.02 | | 4.69 | 0.000 | 0.00 | 0.0 | -7.57 | 2.20 | | 131 | | 0.400 | 0.06 | 0.0 | 2.25 | 0.425 | 0.04 | | 4.60 | 0.025 | 0.00 | 0.0 | -6.45 | 2.35 | | 132 | | 0.400 | 0.08 | 0.0 | 2.37 | 0.375 | 0.02 | | 4.70 | 0.025 | | 22.5 | -5.30 | 2.33 | | 133 | | 0.400 | 0.08 | 0.0 | 2.11 | 0.350 | 0.02 | | 4.54 | 0.050 | | 50.0 | -4.33 | 2.43 | | 134 | | 0.400 | 0.08 | 0.0 | 2.22 | 0.325 | 0.00 | | 4.54 | 0.050 | | 50.0 | -3.37 | 2.32 | | 135 | 214 | 0.325 | 0.02 | | 2.21 | 0.300 | 0.00 | | 4.22 | 0.400 | 0.08 | 0.0 | 2.15 | 2.00 | | | | 0.325 | 0.02 | | 2.21 | 0.275 | 0.00 | | 2.51 | 0.075 | -0.02 | 0.0 | -2.57 | 0.30 | | | | 0.400 | 0.08 | 0.0 | 2.15 | 0.300 | 0.00 | | 4.22 | 0.075 | -0.02 | 0.0 | -2.57 | 2.07 | | 136 | 215 | 0.400 | 0.08 | 0.0 | 2.52 | 0.325 | 0.02 | | 4.24 | 0.325 | | 55.0 | 2.52 | 1.72 | | | | 0.400 | 0.08 | 0.0 | 2.52 | 0.325 |
0.02 | | 4.24 | 0.075 | | 0.0 | -1.82 | 1.72 | | | | 0.325 | 0.02 | | 2.52 | 0.275 | 0.00 | | 2.80 | 0.075 | -0.02 | 0.0 | -1.82 | 0.29 | | 137 | 216 | 0.375 | 0.06 | 0.0 | 2.60 | 0.300 | 0.00 | | 3.99 | 0.325 | | 52.5 | 2.59 | 1.39 | | | | 0.375 | 0.06 | 0.0 | 2.60 | 0.300 | 0.00 | | 3.99 | | -0.02 | | -1.25 | 1.39 | | | | 0.325 | 0.02 | | 2.59 | 0.300 | 0.02 | | 2.86 | | -0.02 | | -1.25 | 0.27 | | 138 | | 0.375 | 0.06 | 0.0 | 2.93 | 0.300 | 0.02 | | 4.16 | | -0.02 | 5.0 | -0.71 | 1.22 | | 139 | | 0.375 | 0.06 | 0.0 | 2.98 | 0.300 | 0.02 | | 3.90 | | -0.02 | 2.5 | -0.34 | 0.91 | | 140 | | 0.375 | 0.06 | 0.0 | 3.39 | 0.300 | 0.02 | 7.5 | 4.00 | | -0.04 | 0.0 | 0.11 | 0.61 | | 141 | | 0.375 | 0.08 | 0.0 | 3.53 | 0.325 | 0.04 | 2.5 | 3.85 | | -0.04 | 0.0 | 0.16 | 0.32 | | 153 | | 0.275 | 0.02 | | 2.06 | 0.250 | 0.02 | | 2.29 | 0.225 | 0.02 | 0.0 | -1.08 | 0.22 | | 154 | | 0.275 | 0.02 | | 2.03 | 0.225 | 0.00 | | 2.30 | 0.225 | 0.04 | 0.0 | -0.85 | 0.27 | | 155 | | 0.275 | 0.02 | | 1.76 | 0.225 | 0.00 | | 2.04 | 0.225 | 0.04 | 0.0 | -1.10 | 0.28 | | 159 | | 0.400 | 0.00 | | 3.49 | 0.375 | | 10.0 | 3.76 | 0.175 | 0.04 | 0.0 | -1.91 | 0.27 | | 160 | 239 | 0.350 | -0.02 | 0.0 | 3.38 | 0.325 | -0.02 | 0.0 | 3.74 | 0.175 | 0.06 | 0.0 | -2.13 | 0.36 | | | | (Hg) | | | | | | | | | | | | | | 90 | 170 | 0.425 | 0.04 | 0.0 | 2.38 | 0.400 | 0.00 | 30.0 | 3.71 | 0.100 | 0.02 | 60.0 | -3.42 | 1.33 | | 91 | 171 | 0.425 | 0.04 | 0.0 | 2.58 | 0.425 | 0.04 | 25.0 | 3.61 | 0.325 | 0.00 | 57.5 | 1.76 | 1.02 | | | | 0.425 | 0.04 | 0.0 | 2.58 | 0.425 | 0.04 | 25.0 | 3.61 | 0.100 | 0.02 | 60.0 | -2.64 | 1.02 | | | | 0.325 | 0.00 | 57.5 | 1.76 | 0.275 | -0.02 | 57.5 | 2.21 | 0.100 | 0.02 | 60.0 | -2.64 | 0.45 | | 92 | 172 | 0.425 | 0.06 | 7.5 | 2.87 | 0.400 | 0.02 | 25.0 | 3.68 | 0.325 | 0.00 | 60.0 | 1.99 | 0.81 | | | | 0.425 | 0.06 | 7.5 | 2.87 | 0.400 | 0.02 | 25.0 | 3.68 | 0.100 | | 60.0 | -1.93 | 0.81 | | | | 0.325 | 0.00 | 60.0 | 1.99 | 0.275 | -0.02 | 60.0 | 2.54 | 0.100 | 0.02 | 60.0 | -1.93 | 0.55 | | 93 | 173 | 0.425 | 0.06 | 7.5 | 2.97 | 0.375 | 0.02 | 20.0 | 3.60 | 0.350 | 0.00 | 60.0 | 2.01 | 0.63 | | | | 0.425 | 0.06 | 7.5 | 2.97 | 0.375 | 0.02 | 20.0 | 3.60 | 0.100 | 0.02 | 52.5 | -1.25 | 0.63 | | | | 0.350 | 0.00 | 60.0 | 2.01 | 0.275 | -0.02 | 60.0 | 2.74 | 0.100 | 0.02 | 52.5 | -1.25 | 0.74 | | 94 | 174 | 0.350 | 0.00 | 60.0 | 2.14 | 0.275 | -0.02 | 60.0 | 3.00 | 0.100 | 0.02 | 60.0 | -0.76 | 0.86 | | 95 | 175 | 0.350 | 0.00 | 60.0 | 2.22 | 0.350 | 0.02 | 42.5 | 2.83 | 0.100 | 0.02 | 52.5 | -0.24 | 0.61 | | 96 | 176 | 0.350 | 0.02 | 60.0 | 2.36 | 0.350 | 0.04 | 45.0 | 2.95 | 0.125 | 0.02 | 40.0 | 0.07 | 0.60 | | 97 | 177 | 0.350 | 0.02 | 60.0 | 2.33 | 0.350 | 0.04 | 47.5 | 2.87 | 0.125 | 0.02 | 40.0 | 0.34 | 0.54 | | 98 | 178 | 0.350 | 0.02 | 60.0 | 2.44 | 0.350 | 0.04 | 47.5 | 2.93 | 0.125 | 0.02 | 35.0 | 0.54 | 0.49 | | 99 | 179 | 0.375 | 0.04 | 37.5 | 2.27 | 0.350 | 0.04 | 47.5 | 2.83 | 0.350 | 0.04 | 60.0 | 2.33 | 0.50 | | | | 0.375 | 0.04 | 37.5 | 2.27 | 0.325 | 0.02 | 30.0 | 2.49 | 0.125 | 0.02 | 42.5 | 0.69 | 0.22 | | | | 0.350 | 0.04 | 60.0 | 2.33 | 0.350 | 0.04 | 47.5 | 2.83 | 0.125 | 0.02 | 42.5 | 0.69 | 0.50 | | 100 | 180 | 0.375 | 0.04 | 37.5 | 2.43 | 0.350 | 0.04 | | 2.90 | 0.350 | | 60.0 | 2.35 | 0.48 | | | | 0.375 | 0.04 | | 2.43 | 0.325 | 0.02 | | 2.66 | 0.125 | | 42.5 | 0.74 | 0.23 | | | | 0.350 | 0.04 | | 2.35 | 0.350 | 0.04 | | 2.90 | 0.125 | | 42.5 | 0.74 | 0.55 | | 101 | 181 | 0.350 | 0.04 | 60.0 | 2.25 | 0.375 | 0.04 | 45.0 | 2.80 | 0.250 | | 0.0 | 0.93 | 0.55 | | | | 0.350 | 0.04 | 60.0 | 2.25 | 0.375 | 0.04 | 45.0 | 2.80 | 0.125 | 0.02 | 57.5 | 0.77 | 0.55 | | | | 0.250 | 0.02 | | 0.93 | 0.200 | 0.00 | | 1.21 | 0.125 | | 57.5 | 0.77 | 0.28 | | 102 | 182 | 0.350 | 0.04 | 60.0 | 2.27 | 0.300 | 0.02 | 60.0 | 2.73 | 0.250 | 0.02 | 0.0 | 0.94 | 0.47 | | | | 0.350 | 0.04 | 60.0 | 2.27 | 0.300 | 0.02 | 60.0 | 2.73 | 0.125 | 0.02 | 60.0 | 0.61 | 0.47 | | | | | | | | | · | _ | · · · · · · · · · · · · · · · · · · · | | | | | | Table (continued) | Nucleus Minimum Sac | ddle | Minimum S.H. | _ | |---|--------------|--|---| | | γ E | ϵ_2 ϵ_4 γ E $E_{\rm sad}$ | _ | | (MeV) | (MeV) | (MeV) (MeV) |) | | $Z=80~\mathrm{(Hg)}$ | | | | | 102 182 0.250 0.02 0.0 0.94 0.200 0.02 | | 0.125 0.02 60.0 0.61 0.26 | | | 103 183 0.350 0.06 60.0 2.11 0.300 0.02 | | 0.250 0.02 0.0 0.70 0.42 | | | $0.350 \ 0.06 \ 60.0 \ 2.11 \ 0.300 \ 0.02$ | | 0.150 0.02 55.0 0.52 0.42 | | | $0.250 \ 0.02 \ 0.0 \ 0.70 \ 0.200 \ 0.02$ | | 0.150 0.02 55.0 0.52 0.25 | | | 104 184 0.350 0.06 60.0 2.12 0.300 0.02 | | 0.150 0.02 60.0 0.23 0.27 | | | 109 189 0.425 0.02 0.0 2.91 0.375 0.02 | 0.0 3.14 | $0.150 0.02 60.0 -1.23 \qquad 0.23$ | | | 110 190 0.425 0.02 0.0 2.75 0.350 0.04 | 0.0 3.34 | 0.125 0.02 60.0 -1.73 0.59 | | | 111 191 0.425 0.02 0.0 2.47 0.350 0.04 | 0.0 3.40 | 0.125 0.02 60.0 -2.14 0.95 | | | 114 194 0.425 0.02 0.0 1.95 0.300 0.04 | 7.5 4.45 | $0.100 0.02 60.0 -3.80 \qquad 2.50$ | | | 115 195 0.425 0.02 0.0 1.68 0.300 0.04 | 7.5 4.74 | $0.100 0.02 60.0 -4.43 \qquad 3.06$ | | | 116 196 0.425 0.02 0.0 1.67 0.300 0.04 | | $0.100 0.02 60.0 -5.19 \qquad 3.44$ | | | 117 197 0.425 0.02 0.0 1.42 0.325 0.02 | | $0.100 0.02 52.5 -5.91 \qquad 4.05$ | | | 118 198 0.425 0.02 0.0 1.48 0.375 0.00 | | $0.100 0.02 60.0 -6.70 \qquad 4.09$ | | | 119 199 0.425 0.02 0.0 1.32 0.375 0.00 | | $0.100 0.02 60.0 -7.50 \qquad 4.30$ | | | 120 200 0.425 0.04 0.0 1.49 0.375 0.00 | | $0.100 0.02 60.0 -8.20 \qquad 4.26$ | | | 121 201 0.425 0.04 0.0 1.49 0.400 0.00 | | $0.075 0.02 60.0 -9.17 \qquad 4.24$ | | | 122 202 0.425 0.04 0.0 1.71 0.375 0.00 | | $0.075 0.02 60.0 -9.88 \qquad 4.07$ | | | 123 203 0.425 0.04 2.5 1.76 0.375 0.00 | | $0.075 0.02 57.5 -10.77 \qquad 3.89$ | | | 124 204 0.425 0.04 0.0 2.03 0.375 0.00 | | $0.050 0.02 60.0 -11.48 \qquad \qquad 3.56$ | | | 125 205 0.425 0.04 2.5 2.06 0.375 0.00 | | $0.000 0.00 0.0 -12.56 \qquad 3.30$ | | | 126 206 | | $0.000 0.00 0.0 -12.86 \qquad 3.04$ | | | 127 207 0.425 0.06 0.0 2.08 0.375 0.00 | | $0.000 0.00 0.0 -11.81 \qquad 2.88$ | | | 128 208 0.425 0.06 0.0 2.17 0.400 0.02 | | $0.000 0.00 0.0 -10.79 \qquad 2.76$ | | | 129 209 0.425 0.06 0.0 2.03 0.400 0.02 | | $0.000 0.00 0.0 -9.47 \qquad 2.65$ | | | 130 210 0.425 0.06 0.0 2.13 0.400 0.02 | | $0.000 0.00 0.0 -8.26 \qquad 2.61$ | | | 131 211 0.425 0.08 0.0 1.87 0.375 0.02 | 20.0 4.58 | $0.000 0.00 0.0 -7.09 \qquad 2.70$ | 0 | | 132 212 0.425 0.08 0.0 1.91 0.375 0.02 | 17.5 4.66 | $0.000 0.00 0.0 -5.96 \qquad \qquad 2.74$ | 4 | | 133 213 0.425 0.08 0.0 1.72 0.350 0.02 | | 0.325 0.02 60.0 1.71 2.70 | 0 | | $0.425 \ 0.08 \ 0.0 \ 1.72 \ 0.350 \ 0.02$ | 20.0 4.43 | $0.000 0.00 0.0 -4.89 \qquad 2.70$ | 0 | | $0.325 \ 0.02 \ 60.0 \ 1.71 \ 0.275 \ 0.00$ | 60.0 1.99 | $0.000 0.00 0.0 -4.89 \qquad 0.27$ | | | 134 214 0.325 0.02 57.5 2.07 0.325 0.00 | 20.0 4.44 | 0.425 0.08 0.0 1.83 2.37 | | | $0.325 \ 0.02 \ 57.5 \ 2.07 \ 0.275 \ 0.00$ | 62.5 2.42 | $0.050 0.00 55.0 -3.90 \qquad 0.35$ | 5 | | $0.425 \ 0.08 \ 0.0 \ 1.83 \ 0.325 \ 0.00$ | | $0.050 0.00 55.0 -3.90 \qquad 2.61$ | 1 | | 135 215 0.325 0.02 55.0 2.19 0.300 0.00 | 17.5 4.10 | 0.425 0.08 0.0 1.84 1.91 | 1 | | $0.325 \ 0.02 \ 55.0 \ 2.19 \ 0.275 \ 0.00$ | 52.5 2.65 | $0.050 0.00 60.0 -3.02 \qquad 0.46$ | 6 | | $0.425 \ 0.08 \ 0.0 \ 1.84 \ 0.300 \ 0.00$ | 17.5 4.10 | $0.050 0.00 60.0 -3.02 \qquad 2.26$ | 6 | | 136 216 0.325 0.02 55.0 2.50 0.325 0.02 | 12.5 4.12 | 0.425 0.08 0.0 2.22 1.62 | 2 | | $0.325 \ 0.02 \ 55.0 \ 2.50 \ 0.275 \ 0.00$ | 47.5 2.92 | $0.050 0.00 55.0 -2.18 \qquad 0.42$ | 2 | | $0.425 \ 0.08 \ 0.0 \ 2.22 \ 0.325 \ 0.02$ | 12.5 4.12 | $0.050 0.00 55.0 -2.18 \qquad 1.90$ | 0 | | 137 217 0.350 0.04 52.5 2.49 0.325 0.02 | 10.0 3.90 | 0.425 0.06 0.0 2.29 1.41 | 1 | | $0.350 \ 0.04 \ 52.5 \ 2.49 \ 0.300 \ 0.00$ | 37.5 2.91 | $0.075 -0.02 7.5 -1.48 \qquad 0.42$ | 2 | | $0.425 \ 0.06 \ 0.0 \ 2.29 \ 0.325 \ 0.02$ | 10.0 3.90 | $0.075 -0.02 7.5 -1.48 \qquad 1.62$ | 2 | | 138 218 | | $0.075 -0.02 7.5 -0.84 \qquad 1.36$ | | | 139 219 0.375 0.06 0.0 2.83 0.300 0.02 | | $0.100 \ -0.04 \ 0.0 \ -0.35$ 1.06 | | | 140 220 0.375 0.06 0.0 3.24 0.325 0.04 | 7.5 3.99 | $0.100 \ -0.02 \ 7.5 \ 0.10 \ 0.75$ | | | 141 221 0.375 0.08 0.0 3.41 0.325 0.04 | 5.0 3.84 | $0.150 \ -0.06 \ 0.0 \ 0.18 \ 0.42$ | | | 142 222 | 5.0 4.00 | 0.175 -0.04 0.0 0.48 0.23 | | | 143 223 | 0.0 4.05 | $0.175 \ -0.04 \ 0.0 \ 0.30 \ 0.20$ | | | 154 234 0.275 0.02 60.0 2.21 0.225 0.00 | | $0.225 0.02 2.5 -0.48 \qquad 0.29$ | | | 155 235 0.275 0.02 60.0 1.94 0.225 0.00 | | $0.225 0.04 0.0 -0.66 \qquad 0.32$ | | ${\bf Table} \ ({\rm continued})$ | Nucleus | | Minimum | | | Saddle | | | Min | imum | <u> </u> | S.H. | |-------------|--------------|-----------------------|-------|--------------|-----------------------|-------|--------------|--------------|----------|-----------|---------------| | N A | ϵ_2 | ϵ_4 γ | E | ϵ_2 | ϵ_4 γ | E | ϵ_2 | ϵ_4 | γ | E | $E_{\rm sad}$ | | | | | (MeV) | | | (MeV) | | | | (MeV) | (MeV) | | Z = 80 | | | | | | | | | | | | | 156 236 | 0.275 | 0.02 60.0 | 1.98 | | 0.00 60.0 | | 0.200 | | 0.0 | -0.50 | 0.21 | | 160 240 | 0.350 | -0.02 0.0 | 3.42 | 0.325 - | 0.02 0.0 | 3.73 | 0.175 | 0.06 | 0.0 | -1.47 | 0.31 | | Z = 81 | ` ' | | | | | | | | | | | | $92\ 173$ | 0.425 | 0.06 5.0 | 2.28 | | $0.02 \ 17.5$ | 3.47 | 0.350 | | | 1.59 | 1.19 | | | 0.425 | 0.06 - 5.0 | 2.28 | | $0.02 \ 17.5$ | 3.47 | 0.050 | | | -2.50 | 1.19 | | | 0.350 | 0.00 60.0 | 1.59 | | 0.00 52.5 | 2.37 | 0.050 | | | -2.50 | 0.78 | | $93\ 174$ | 0.425 | 0.06 - 7.5 | 2.38 | | $0.02 \ 17.5$ | 3.34 | 0.350 | | | 1.58 | 0.96 | | | 0.425 | 0.06 7.5 | 2.38 | | 0.02 17.5 | 3.34 | 0.075 | | 7.5 | -1.78 | 0.96 | | | 0.350 | 0.00 60.0 | 1.58 | | 0.02 60.0 | 2.63 | 0.075 | | 7.5 | -1.78 | 1.04 | | 94 175 | 0.350 | 0.00 60.0 | 1.71 | | 0.02 40.0 |
| 0.075 | | | -1.26 | 0.94 | | 95 176 | 0.350 | 0.00 60.0 | 1.79 | | 0.02 45.0 | 2.54 | 0.075 | | | -0.74 | 0.75 | | 96 177 | 0.350 | 0.02 60.0 | 1.93 | | 0.02 45.0 | 2.62 | 0.075 | | | -0.35 | 0.68 | | 97 178 | 0.350 | 0.02 60.0 | 1.91 | | 0.04 45.0 | 2.54 | 0.050 | | | 0.08 | 0.62 | | 98 179 | 0.350 | 0.02 60.0 | 2.01 | | 0.04 47.5 | 2.60 | 0.050 | | | 0.30 | 0.59 | | 99 180 | 0.375 | 0.04 60.0 | 1.94 | | 0.04 47.5 | 2.50 | 0.075 | | | 0.50 | 0.56 | | 100 181 | 0.375 | 0.04 60.0 | 1.95 | | $0.04 \ 47.5$ | 2.57 | 0.000 | | 0.0 | 0.55 | 0.62 | | $101 \ 182$ | 0.375 | 0.06 57.5 | 1.89 | | $0.02 \ 37.5$ | 2.43 | 0.075 | | | 0.64 | 0.55 | | $102 \ 183$ | 0.375 | 0.06 60.0 | 1.89 | | 0.02 60.0 | 2.60 | 0.075 | | | 0.55 | 0.71 | | 103 184 | 0.375 | 0.06 60.0 | 1.72 | | 0.02 60.0 | 2.40 | 0.250 | | 0.0 | 0.79 | 0.68 | | | 0.375 | 0.06 60.0 | 1.72 | | 0.02 60.0 | 2.40 | 0.075 | | | 0.47 | 0.68 | | | 0.250 | 0.02 0.0 | 0.79 | | $0.02 \ 17.5$ | 1.04 | 0.075 | | | 0.47 | 0.25 | | $104 \ 185$ | 0.375 | 0.06 60.0 | 1.75 | | 0.02 60.0 | 2.25 | 0.100 | | | 0.25 | 0.50 | | $105 \ 186$ | 0.375 | 0.06 60.0 | 1.61 | | 0.02 57.5 | 2.02 | 0.100 | | | 0.08 | 0.41 | | 109 190 | 0.425 | 0.02 0.0 | 2.41 | | 0.04 0.0 | 2.83 | 0.075 | | | -1.21 | 0.42 | | $110 \ 191$ | 0.425 | 0.02 0.0 | 2.25 | | 0.04 0.0 | 3.08 | 0.075 | | | -1.76 | 0.82 | | $111 \ 192$ | 0.425 | 0.02 0.0 | 1.97 | | 0.04 0.0 | 3.21 | 0.075 | | | -2.19 | 1.24 | | $114 \ 195$ | 0.425 | 0.02 0.0 | 1.46 | | $0.04 \ 12.5$ | 4.32 | 0.050 | | | -4.08 | 2.86 | | 115 196 | 0.425 | 0.02 0.0 | 1.20 | | 0.02 17.5 | 4.60 | 0.050 | | | -4.71 | 3.40 | | 116 197 | 0.425 | 0.02 0.0 | 1.18 | | 0.02 17.5 | 5.02 | 0.050 | | | -5.51 | 3.84 | | 117 198 | 0.425 | 0.02 0.0 | 0.95 | | 0.00 22.5 | 5.20 | 0.050 | | | -6.22 | 4.25 | | 118 199 | 0.425 | 0.02 0.0 | 1.01 | | 0.00 27.5 | 5.30 | 0.050 | | | -7.06 | 4.29 | | 119 200 | 0.425 | 0.04 0.0 | 0.82 | | 0.00 25.0 | 5.41 | 0.050 | | | -7.91 | 4.59 | | 120 201 | 0.425 | 0.04 0.0 | 0.96 | | 0.00 25.0 | 5.55 | 0.050 | | | -8.72 | 4.60 | | 121 202 | 0.425 | 0.04 0.0 | 0.97 | | 0.00 25.0 | 5.55 | 0.050 | | | | 4.58 | | 122 203 | 0.425 | 0.04 0.0 | 1.20 | | 0.00 27.5 | 5.59 | | | | -10.55 | 4.39 | | 123 204 | 0.425 | 0.04 0.0 | 1.27 | | $0.00 \ 27.5$ | 5.45 | | | | -11.48 | 4.18 | | 124 205 | 0.425 | 0.04 0.0 | 1.53 | | 0.00 25.0 | | 0.000 | | | -12.41 | 3.86 | | 125 206 | 0.425 | 0.04 2.5 | 1.59 | | 0.00 25.0 | 5.21 | 0.000 | | | -13.49 | 3.62 | | 126 207 | 0.425 | 0.06 0.0 | 1.69 | | 0.00 25.0 | 5.11 | 0.000 | | | -13.78 | 3.42 | | 127 208 | 0.425 | 0.06 0.0 | 1.59 | | 0.02 22.5 | 4.84 | 0.000 | | | -12.71 | 3.25 | | 128 209 | 0.425 | 0.06 0.0 | 1.67 | | 0.02 22.5 | | 0.000 | | | -11.71 | 3.16 | | 129 210 | 0.425 | 0.06 0.0 | 1.54 | | 0.02 20.0 | 4.54 | 0.000 | | | -10.38 | 2.99 | | 130 211 | 0.425 | 0.06 0.0 | 1.64 | | 0.02 20.0 | | 0.000 | | 0.0 | -9.15 | 2.97 | | 131 212 | 0.425 | 0.08 0.0 | 1.40 | | 0.02 20.0 | | 0.000 | | 0.0 | -7.97 | 2.99 | | $132 \ 213$ | 0.425 | 0.08 0.0 | 1.45 | | 0.02 17.5 | 4.47 | 0.325 | | | 1.25 | 3.03 | | | 0.425 | 0.08 0.0 | 1.45 | | $0.02 \ 17.5$ | 4.47 | 0.000 | | 0.0 | -6.85 | 3.03 | | 100 014 | 0.325 | 0.02 60.0 | 1.25 | | 0.00 60.0 | 1.56 | 0.000 | | 0.0 | -6.85 | 0.30 | | $133 \ 214$ | 0.325 | 0.02 60.0 | 1.47 | | 0.02 20.0 | | 0.425 | | 0.0 | 1.27 | 2.76 | | | 0.325 | 0.02 60.0 | 1.47 | | 0.00 60.0 | | 0.000 | | 0.0 | -5.78 | 0.44 | | - | 0.425 | 0.08 0.0 | 1.27 | 0.350 | 0.02 20.0 | 4.22 | 0.000 | | 0.0 | -5.78 | 2.96 | | | | | | | | | | (cc | ntinu | ies on ne | vt nage) | ${\bf Table} \ ({\rm continued})$ | Nucleus | | Mini | mum | | | Sad | ldle | | | Mini | mum | | S.H. | |--------------------|--------------|--------------|----------|-------|--------------|--------------|----------|---------------------|--------------|--------------|-------------------|-------|---------------| | N A | ϵ_2 | ϵ_4 | γ | E | ϵ_2 | ϵ_4 | γ | E | ϵ_2 | ϵ_4 | γ | E | $E_{\rm sad}$ | | | | | | (MeV) | | | | (MeV) | | | | (MeV) | (MeV) | | Z=8 | ` ' | | | | | | | | | | | | | | $134 \ 215$ | 0.325 | | 57.5 | 1.81 | 0.325 | | 20.0 | 4.22 | 0.425 | 0.08 | 0.0 | 1.37 | 2.41 | | | 0.325 | 0.00 | | 1.81 | 0.275 | | 55.0 | 2.34 | 0.000 | 0.00 | 0.0 | -4.76 | 0.53 | | | 0.425 | 0.08 | 0.0 | 1.37 | 0.325 | | 20.0 | 4.22 | 0.000 | 0.00 | 0.0 | -4.76 | 2.84 | | $135 \ 216$ | 0.350 | 0.02 | | 1.84 | 0.300 | | 17.5 | 3.90 | 0.425 | 0.08 | 0.0 | 1.39 | 2.06 | | | 0.350 | 0.02 | | 1.84 | 0.275 | | 47.5 | 2.54 | 0.000 | 0.00 | 0.0 | -3.78 | 0.70 | | | 0.425 | 0.08 | 0.0 | 1.39 | 0.300 | | 17.5 | 3.90 | 0.000 | 0.00 | 0.0 | -3.78 | 2.51 | | $136 \ 217$ | 0.350 | 0.02 | | 2.12 | 0.325 | | 12.5 | 3.89 | 0.425 | 0.08 | 0.0 | 1.77 | 1.78 | | | 0.350 | 0.02 | | 2.12 | 0.275 | | 45.0 | 2.79 | 0.025 | | 50.0 | -2.93 | 0.67 | | 105 010 | 0.425 | 0.08 | 0.0 | 1.77 | 0.325 | | 12.5 | 3.89 | 0.025 | | 50.0 | -2.93 | 2.12 | | 137 218 | 0.350 | 0.02 | | 2.12 | 0.300 | | 12.5 | 3.65 | 0.425 | 0.06 | 0.0 | 1.86 | 1.52 | | | 0.350 | 0.02 | | 2.12 | 0.300 | | 37.5 | 2.74 | 0.025 | | 47.5 | -2.09 | 0.62 | | 100 010 | 0.425 | 0.06 | 0.0 | 1.86 | 0.300 | | 12.5 | 3.65 | 0.025 | | 47.5 | -2.09 | 1.79 | | 138 219 | 0.350 | 0.02 | | 2.35 | 0.325 | | 10.0 | 3.83 | 0.425 | 0.06 | 0.0 | 2.28 | 1.48 | | | 0.350 | 0.02 | | 2.35 | 0.300 | | 32.5 | 2.73 | 0.025 | | 60.0 | -1.41 | 0.38 | | 100 000 | 0.425 | 0.06 | 0.0 | 2.28 | 0.325 | | 10.0 | 3.83 | 0.025 | | 60.0 | -1.41 | 1.55 | | 139 220 | 0.425 | 0.06 | 0.0 | 2.53 | 0.325 | 0.02 | 7.5 | 3.65 | 0.075 | -0.02 | 7.5 | -0.79 | 1.12 | | 140 221 | 0.425 | 0.06 | 0.0 | 2.91 | 0.325 | 0.02 | 5.0 | 3.81 | 0.075 | -0.02 | 0.0 | -0.29 | 0.89 | | 141 222 | 0.400 | 0.06 | 0.0 | 3.11 | 0.300 | 0.02 | 5.0 | 3.67 | | -0.06 | 0.0 | -0.09 | 0.56 | | $142 \ 223$ | 0.400 | 0.06 | 0.0 | 3.49 | 0.325 | 0.04 | 5.0 | 3.85 | 0.375 | | 60.0 | 2.46 | 0.36 | | | 0.400 | 0.06 | 0.0 | 3.49 | 0.325 | 0.04 | 5.0 | 3.85 | | -0.06 | 0.0 | 0.22 | 0.36 | | 1.40.004 | 0.375 | 0.04 | | 2.46 | 0.350 | | 50.0 | 2.78 | | -0.06 | 0.0 | 0.22 | 0.32 | | $143 \ 224$ | 0.375 | 0.06 | 0.0 | 3.63 | 0.350 | 0.06 | 0.0 | 3.88 | 0.375 | | 60.0 | 2.43 | 0.25 | | | 0.375 | 0.06 | 0.0 | 3.63 | 0.350 | 0.06 | 0.0 | 3.88 | | -0.04 | 7.5 | 0.21 | 0.25 | | 144 005 | 0.375 | 0.04 | | 2.43 | 0.375 | 0.04 | | 2.74 | | -0.04 | 7.5 | 0.21 | 0.31 | | 144 225 | 0.375 | | 60.0 | 2.65 | 0.375 | 0.04 | | 2.98 | | -0.04 | $\frac{2.5}{2.5}$ | 0.38 | 0.33 | | 145 226 | 0.375 | | 60.0 | 2.68 | 0.375 | 0.04 | | 2.98 | | -0.04 | 2.5 | 0.23 | 0.30 | | 146 227 | 0.375 | | 60.0 | 2.91 | 0.375 | 0.04 | | 3.20 | | -0.04 | 0.0 | 0.44 | 0.29 | | 147 228 | 0.375 | | 60.0 | 2.93 | 0.350 | 0.04 | | 3.16 | | -0.02 | 0.0 | 0.13 | 0.23 | | 155 236
160 241 | 0.300 | | 60.0 | 1.89 | 0.250 | | 60.0 | 2.10 | 0.200 | 0.02 | 2.5 | -0.54 | 0.22 | | | | -0.02 | 0.0 | 3.18 | 0.325 | -0.02 | 0.0 | 3.45 | 0.175 | 0.04 | 0.0 | -1.28 | 0.27 | | | 2 (Pb) | 0.00 | 0.5 | 0.10 | 0.055 | 0.00 | 150 | 0.10 | 0.050 | 0.00 | 00.0 | 1 = 1 | 0.07 | | 93 175 | 0.425 | 0.06 | 2.5 | 2.12 | 0.375 | | 15.0 | 3.10 | 0.350 | | 60.0 | 1.74 | 0.97 | | | 0.425 | 0.06 | 2.5 | 2.12 | 0.375 | | 15.0 | 3.10 | 0.000 | 0.00 | | -2.12 | 0.97 | | 04 150 | 0.350 | | 60.0 | 1.74 | 0.325 | | 37.5 | 2.52 | 0.000 | 0.00 | | -2.12 | 0.78 | | 94 176 | 0.425 | 0.06 | 5.0 | 2.35 | 0.375 | | 15.0 | 3.13 | 0.350 | | 60.0 | 1.87 | 0.79 | | | 0.425 | 0.06 | | 2.35 | 0.375 | | 15.0 | 3.13 | 0.000 | 0.00 | 0.0 | -1.58 | 0.79 | | 05 177 | 0.350 | | 60.0 | 1.87 | 0.325 | | 37.5 | 2.61 | 0.000 | 0.00 | 0.0 | -1.58 | 0.74 | | 95 177 | 0.375 | | 60.0 | 1.92 | 0.350 | | 40.0 | 2.48 | 0.000 | 0.00 | 0.0 | -1.01 | 0.56 | | 96 178 | 0.375 | | 60.0 | 2.00 | 0.350 | | 42.5 | 2.52 | 0.000 | 0.00 | 0.0 | -0.68 | 0.52 | | 97 179 | 0.425 | 0.06 | 5.0 | 2.61 | 0.375 | 0.04 | 0.0 | 2.91 | 0.375 | | 60.0 | 1.98 | 0.30 | | | 0.425 | 0.06 | 5.0 | 2.61 | 0.375 | 0.04 | 0.0 | 2.91 | 0.000 | 0.00 | 0.0 | -0.25 | 0.30 | | 00 100 | 0.375 | | 60.0 | 1.98 | 0.350 | | 47.5 | 2.49 | 0.000 | 0.00 | 0.0 | -0.25 | 0.51 | | 98 180 | 0.375 | | 60.0 | 2.08 | 0.350 | | 47.5 | 2.57 | 0.000 | 0.00 | 0.0 | -0.14 | 0.49 | | 99 181 | 0.375 | | 60.0 | 1.99 | 0.375 | | 47.5 | 2.46 | 0.275 | -0.02 | | 1.15 | 0.47 | | | 0.375 | | 60.0 | 1.99 | 0.375 | | 47.5 | 2.46 | 0.000 | 0.00 | 0.0 | 0.33 | 0.47 | | 100 100 | | -0.02 | | 1.15 | 0.150 | | 32.5 | 1.47 | 0.000 | 0.00 | 0.0 | 0.33 | 0.31 | | 100 182 | 0.375 | | 60.0 | 2.00 | 0.375 | | 45.0 | 2.49 | 0.275 | 0.00 | 2.5 | 1.21 | 0.49 | | | 0.375 | | 60.0 | 2.00 | 0.375 | | 45.0 | 2.49 | 0.000 | 0.00 | 0.0 | 0.22 | 0.49 | | 101 100 | 0.275 | 0.00 | | 1.21 | 0.150 | | 32.5 | $\frac{1.53}{2.20}$ | 0.000 | 0.00 | 0.0 | 0.22 | 0.32 | | 101 183 | 0.375 | 0.04 | 57.5 | 1.93 | 0.350 | 0.04 | 35.0 | 2.39 | 0.275 | 0.02 | 0.0 | 1.05 | 0.46 | ${\bf Table} \ ({\rm continued})$ | Nucle | eus | | Min | imum | L | | Sa | ddle | | | Min | imun | 1 | S.H. | |---|----------------|------------------|----------------|--------------|----------------|------------------|--------------|----------|---------------------|---------------|--------------|----------|-----------------|---------------------| | \overline{N} | \overline{A} | ϵ_2 | ϵ_4 | γ | E | ϵ_2 | ϵ_4 | γ | E | ϵ_2 | ϵ_4 | γ | E | $E_{\rm sad}$ | | | | | | | (MeV) | | | | (MeV) | | | | (MeV) | (MeV) | | | = 82 (| Pb) | | | | | | | | | | | | | | 101 1 | 183 | 0.375 | 0.04 | 57.5 | 1.93 | 0.350 | 0.04 | 35.0 | 2.39 | 0.000 | | 0.0 | 0.47 | 0.46 | | | | 0.275 | | 0.0 | 1.05 | 0.150 | 0.00 | 30.0 | 1.56 | 0.000 | | 0.0 | 0.47 | 0.51 | | $102 \ 1$ | 184 | 0.375 | 0.06 | 60.0 | 1.95 | 0.350 | 0.02 | 40.0 | 2.72 | 0.275 | 0.02 | 0.0 | 1.11 | 0.77 | | | | 0.375 | 0.06 | 60.0 | 1.95 | 0.350 | | | 2.72 | 0.000 | | 0.0 | 0.27 | 0.77 | | | | 0.275 | 0.02 | 0.0 | 1.11 | 0.150 | | | 1.47 | 0.000 | | 0.0 | 0.27 | 0.36 | | $103 \
1$ | 185 | 0.375 | 0.06 | | 1.78 | 0.300 | | | 2.64 | 0.275 | | 0.0 | 0.98 | 0.86 | | | | 0.375 | 0.06 | | 1.78 | 0.300 | | | 2.64 | 0.000 | | 0.0 | 0.33 | 0.86 | | | | 0.275 | 0.02 | 0.0 | 0.98 | 0.175 | | | 1.36 | 0.000 | | 0.0 | 0.33 | 0.38 | | 104 1 | 186 | 0.375 | | 60.0 | 1.81 | 0.300 | | | 2.50 | 0.250 | | 0.0 | 1.04 | 0.68 | | | | 0.375 | | 60.0 | 1.81 | 0.300 | | | 2.50 | 0.175 | | 60.0 | 0.88 | 0.68 | | | | 0.375 | 0.06 | | 1.81 | 0.300 | | | 2.50 | 0.000 | | 0.0 | 0.10 | 0.68 | | | | 0.250 | | 0.0 | 1.04 | | 0.00 | | 1.26 | 0.175 | | | 0.88 | 0.22 | | | | | | 0.0 | 1.04 | | 0.00 | | 1.26 | 0.000 | | 0.0 | 0.10 | 0.22 | | | | 0.175 | 0.00 | | 0.88 | 0.125 | | | 1.10 | 0.000 | | 0.0 | 0.10 | 0.22 | | 105 1 | 187 | 0.375 | | 60.0 | 1.68 | 0.300 | | | 2.27 | 0.250 | | 0.0 | 0.79 | 0.59 | | | | 0.375 | | 60.0 | 1.68 | 0.300 | | | 2.27 | 0.175 | | 60.0 | 0.63 | 0.59 | | | | 0.375 | | 60.0 | 1.68 | 0.300 | | | 2.27 | 0.000 | | 0.0 | 0.01 | 0.59 | | | | | | 0.0 | 0.79 | | 0.02 | | 1.11 | 0.175 | | 60.0 | 0.63 | 0.32 | | | | 0.250 | | 0.0 | 0.79 | 0.175 | 0.02 | | 1.11 | 0.000 | | 0.0 | 0.01 | 0.32 | | | | 0.175 | | 60.0 | 0.63 | | 0.00 | | 0.89 | 0.000 | | 0.0 | 0.01 | 0.27 | | 106 1 | 188 | 0.375 | | 60.0 | 1.72 | 0.325 | | | 2.09 | 0.175 | | 60.0 | 0.33 | 0.38 | | | | 0.375 | | 60.0 | 1.72 | 0.325 | | | 2.09 | 0.000 | | 0.0 | -0.29 | 0.38 | | | | 0.175 | | 60.0 | 0.33 | 0.125 | | | 0.59 | 0.000 | | 0.0 | -0.29 | 0.26 | | 107 1 | 189 | 0.375 | 0.06 | | 1.63 | 0.325 | | | 1.94 | 0.175 | | | 0.05 | 0.31 | | | | 0.375 | 0.06 | | 1.63 | 0.325 | | | 1.94 | 0.000 | | 0.0 | -0.52 | 0.31 | | 100 1 | 101 | | 0.00 | | 0.05 | 0.125 | | | 0.34 | 0.000 | | 0.0 | -0.52 | 0.28 | | 109 1 | | | | 0.0 | 2.38 | 0.350 | | 0.0 | 2.66 | 0.025 | | 2.5 | -1.25 | 0.28 | | 110 1 | | 0.425 | 0.02 | 0.0 | 2.19 | 0.350 | | 0.0 | 2.91 | 0.000 | | 0.0 | -1.86 | 0.71 | | 111 1 | | 0.425 | 0.02 | 0.0 | 1.91 | 0.300 | | 5.0 | 3.09 | 0.025 | | 0.0 | -2.24 | 1.18 | | 116 1 | | 0.425 | 0.02 | 0.0 | 1.14 | | 0.02 | | 4.86 | 0.000 | | 0.0 | -5.68 | 3.72 | | 117 1 | | 0.425 | 0.02 | 0.0 | 0.89 | 0.325 | | | 5.02 | 0.000 0.000 | | 0.0 | -6.37 | 4.12 | | 118 2
119 2 | 200 | $0.425 \\ 0.425$ | $0.04 \\ 0.04$ | $0.0 \\ 0.0$ | $0.88 \\ 0.68$ | $0.350 \\ 0.375$ | | | $5.24 \\ 5.35$ | 0.000 | | 0.0 | -7.21 -8.03 | $4.36 \\ 4.67$ | | | | | | | | 0.375 | | | | | | 0.0 | -8.03 -8.90 | | | 120 2 $121 2$ | | $0.425 \\ 0.425$ | | 0.0 | 0.83 | 0.375 0.350 | | | $5.49 \\ 5.36$ | 0.000 0.000 | | 0.0 | | 4.66 | | $\begin{array}{ccc} 121 & 2 \\ 122 & 2 \end{array}$ | | 0.425 0.425 | | $0.0 \\ 0.0$ | $0.85 \\ 1.07$ | 0.350 | | | 5.30 5.45 | 0.000 | | 0.0 | -9.81 -10.73 | $4.51 \\ 4.37$ | | $122 \ 2$ $123 \ 2$ | | 0.425 0.425 | | 0.0 | 1.07 1.15 | 0.375 | | | $5.45 \\ 5.44$ | 0.000 | | | -10.73 -11.66 | 4.30 | | $123 \ 2$ | | 0.425 0.425 | | 0.0 | 1.13 1.42 | 0.373 | | | 5.44 5.37 | 0.000 | | | -11.66 -12.65 | $\frac{4.30}{3.95}$ | | $124 \ 2$ | | 0.425 0.425 | | 0.0 | 1.42 1.40 | 0.400 | | | 5.37 5.17 | 0.000 | | | -12.65 -13.65 | 3.78 | | $126 \ 2$ | | 0.425 0.425 | | 0.0 | 1.40 1.50 | 0.400 0.375 | | | $\frac{5.17}{5.07}$ | 0.000 | | | -13.03 -13.93 | 3.56 | | $120^{\circ}2$ | | 0.425 0.425 | | 0.0 | 1.30 1.39 | 0.400 | | | $\frac{3.07}{4.75}$ | 0.000 | | | -13.93 -12.85 | 3.36 | | 128 2 | | 0.425 0.425 | | 0.0 | 1.49 | 0.400 0.375 | | | 4.73 4.72 | 0.000 | | | -12.85 -11.85 | 3.23 | | 120° 2 129° 2 | | 0.425 0.425 | | 0.0 | 1.49 1.36 | 0.375 | | | $\frac{4.12}{4.47}$ | 0.000 | | | -11.50 -10.50 | 3.11 | | 130° 2 | | 0.425 0.425 | | 0.0 | 1.30 1.45 | 0.375 | | | $\frac{4.47}{4.47}$ | 0.000 | | 0.0 | -10.30 -9.30 | 3.11 3.02 | | $130^{\circ} 2$ | | 0.425 0.425 | | 0.0 | 1.45 1.16 | 0.375 | | | 4.47 4.25 | 0.000 | | 0.0 | -9.30 -8.10 | 3.02 3.09 | | $131 \ 2$ | | 0.425 0.325 | | | 1.10 1.47 | 0.375 | | | 4.23 4.34 | 0.000 0.425 | | 0.0 | -3.10 1.20 | $\frac{3.09}{2.87}$ | | 104 4 | ~ 1 ·# | 0.325 0.325 | | | 1.47 1.47 | 0.350 0.275 | | | $\frac{4.34}{1.77}$ | 0.425 0.000 | | 0.0 | -6.97 | 0.31 | | | | 0.325 0.425 | | 0.0 | 1.47 1.20 | 0.275 0.350 | | | $\frac{1.77}{4.34}$ | 0.000 | | 0.0 | -6.97 | 3.14 | | 133 2 | 215 | 0.425 0.325 | | | 1.63 | 0.350 | | | 4.06 | 0.425 | | 0.0 | 1.03 | 2.43 | | 100 2 | _10 | 0.325 | | | 1.63 | 0.330 0.275 | | | 2.11 | 0.000 | | 0.0 | -5.89 | 0.48 | | | | 0.020 | 0.00 | 55.0 | 1.00 | 0.210 | 0.00 | 52.0 | 4.11 | 3.000 | 0.00 | / | 0.00 | | ${\bf Table} \ ({\rm continued})$ | Nuc | leus | | Mini | mum | | | Sad | ldle | | | Mini | mum | | S.H. | |----------------|----------------|---|--------------|--------------|-------|------------------|--------------|----------|---------------------|------------------|-----------------|-------------------|-------------|---------------| | \overline{N} | \overline{A} | ϵ_2 | ϵ_4 | γ | E | ϵ_2 | ϵ_4 | γ | E | ϵ_2 | ϵ_4 | γ | E | $E_{\rm sad}$ | | | | | | | (MeV) | | | | (MeV) | | | | (MeV) | (MeV) | | | r = 82 | | | | | | | | | | | | | | | 133 | | 0.425 | 0.08 | 0.0 | 1.03 | 0.350 | | 20.0 | 4.06 | 0.000 | 0.00 | 0.0 | -5.89 | 3.03 | | 134 | 216 | 0.350 | | 55.0 | 1.90 | 0.325 | | 20.0 | 4.05 | 0.425 | 0.08 | 0.0 | 1.13 | 2.15 | | | | 0.350 | | 55.0 | 1.90 | 0.275 | | 50.0 | 2.48 | 0.000 | 0.00 | 0.0 | -4.88 | 0.58 | | | | 0.425 | 0.08 | 0.0 | 1.13 | 0.325 | | 20.0 | 4.05 | 0.000 | 0.00 | 0.0 | -4.88 | 2.92 | | 135 | 217 | 0.350 | | 55.0 | 1.93 | 0.300 | | 17.5 | 3.73 | 0.425 | 0.08 | 0.0 | 1.15 | 1.80 | | | | 0.350 | | 55.0 | 1.93 | 0.275 | | 45.0 | 2.63 | 0.000 | 0.00 | 0.0 | -3.89 | 0.70 | | | | 0.425 | 0.08 | 0.0 | 1.15 | 0.300 | | 17.5 | 3.73 | 0.000 | 0.00 | 0.0 | -3.89 | 2.59 | | 136 | 218 | 0.350 | | 55.0 | 2.22 | 0.300 | | 15.0 | 3.71 | 0.425 | 0.08 | 0.0 | 1.55 | 1.49 | | | | 0.350 | | 55.0 | 2.22 | 0.275 | 0.00 | | 2.84 | 0.000 | 0.00 | 0.0 | -3.04 | 0.62 | | | | 0.425 | 0.08 | 0.0 | 1.55 | 0.300 | | 15.0 | 3.71 | 0.000 | 0.00 | 0.0 | -3.04 | 2.16 | | 137 | 219 | 0.350 | | 52.5 | 2.19 | 0.300 | 0.00 | | 3.50 | 0.425 | 0.06 | 0.0 | 1.69 | 1.31 | | | | 0.350 | | 52.5 | 2.19 | 0.300 | 0.00 | | 2.71 | 0.000 | 0.00 | 0.0 | -2.16 | 0.52 | | | | 0.425 | 0.06 | 0.0 | 1.69 | 0.300 | 0.00 | | 3.50 | 0.000 | 0.00 | 0.0 | -2.16 | 1.80 | | 138 | 220 | 0.350 | | 50.0 | 2.43 | 0.325 | | 10.0 | 3.66 | 0.425 | 0.06 | 0.0 | 2.12 | 1.22 | | | | 0.350 | | 50.0 | 2.43 | 0.300 | 0.00 | | 2.69 | 0.000 | 0.00 | 0.0 | -1.48 | 0.25 | | | | 0.425 | 0.06 | 0.0 | 2.12 | 0.325 | | 10.0 | 3.66 | 0.000 | 0.00 | 0.0 | -1.48 | 1.53 | | 139 | | 0.425 | 0.06 | 0.0 | 2.37 | 0.325 | 0.02 | 7.5 | 3.46 | 0.025 | 0.00 | 2.5 | -0.73 | 1.09 | | 140 | | 0.425 | 0.06 | 0.0 | 2.78 | 0.300 | 0.00 | 7.5 | 3.63 | 0.000 | 0.00 | 0.0 | -0.21 | 0.86 | | 141 | | 0.400 | 0.06 | 0.0 | 2.96 | 0.350 | 0.04 | 7.5 | 3.52 | 0.150 | -0.06 | 0.0 | -0.04 | 0.57 | | 142 | 224 | 0.400 | 0.06 | 0.0 | 3.35 | 0.325 | 0.04 | 5.0 | 3.71 | 0.375 | | 60.0 | 2.50 | 0.36 | | | | 0.400 | 0.06 | 0.0 | 3.35 | 0.325 | 0.04 | 5.0 | 3.71 | | -0.06 | 0.0 | 0.26 | 0.36 | | | | 0.375 | | 60.0 | 2.50 | 0.350 | | 45.0 | 2.70 | | -0.06 | 0.0 | 0.26 | 0.21 | | 143 | 225 | 0.375 | 0.06 | 0.0 | 3.47 | 0.350 | 0.06 | 0.0 | 3.77 | 0.375 | | 60.0 | 2.46 | 0.29 | | | | 0.375 | 0.06 | 0.0 | 3.47 | 0.350 | 0.06 | 0.0 | 3.77 | | -0.06 | 0.0 | 0.28 | 0.29 | | 1.4.4 | 226 | 0.375 | | 60.0 | 2.46 | 0.375 | | 52.5 | 2.68 | | -0.06 | 0.0 | 0.28 | 0.22 | | 144 | | 0.375 | | 60.0 | 2.68 | 0.375 | | 50.0 | 2.92 | | -0.04 | 0.0 | 0.48 | 0.24 | | 145 | | 0.375 | | 60.0 | 2.71 | 0.375 | | 50.0 | 2.92 | | -0.04 | 0.0 | 0.33 | 0.21 | | 160 | | | -0.02 | 0.0 | 3.17 | 0.325 | -0.02 | 0.0 | 3.38 | 0.175 | 0.04 | 7.5 | -0.80 | 0.22 | | | r = 83 | ` / | 0.00 | | 4.00 | | 0.04 | 40.5 | 2.00 | | 0.00 | 00.0 | 4.00 | 0.00 | | 95 | 178 | 0.425 | 0.06 | 5.0 | 1.90 | 0.375 | | 12.5 | 2.60 | 0.375 | | 60.0 | 1.93 | 0.68 | | | | 0.425 | 0.06 | 5.0 | 1.90 | 0.375 | 0.04 | | 2.60 | 0.075 | -0.02 | 0.0 | -0.01 | 0.70 | | 0.0 | 4=0 | 0.375 | | 60.0 | 1.93 | 0.350 | 0.02 | | 2.34 | 0.075 | -0.02 | 0.0 | -0.01 | 0.42 | | 96 | 179 | 0.425 | 0.06 | 5.0 | 2.12 | 0.375 | 0.04 | 0.0 | 2.67 | 0.375 | 0.02 | | 2.00 | 0.56 | | | | 0.425 | 0.06 | 5.0 | 2.12 | 0.375 | 0.04 | | 2.67 | | -0.02 | 0.0 | 0.40 | 0.56 | | 07 | 100 | 0.375 | | 60.0 | 2.00 | 0.375 | | 47.5 | 2.46 | | -0.02 | 0.0 | 0.40 | 0.46 | | 97 | 180 | 0.425 | 0.06 | | 2.12 | 0.375 | 0.04 | | 2.55 | 0.375 | 0.02 | | 1.98 | 0.43 | | | | 0.425 | 0.06 | 5.0 | 2.12 | 0.375 | 0.04 | | 2.55 | | -0.02 | $\frac{2.5}{2.5}$ | 0.81 | 0.43 | | 00 | 101 | 0.375 | | 60.0 | 1.98 | 0.375 | | 50.0 | 2.41 | | -0.02 | 2.5 | 0.81 | 0.43 | | 98 | 181 | 0.375 | | 60.0 | 2.07 | 0.375 | | 47.5 | 2.42 | | -0.02 | | 0.99 | 0.34 | | | | 0.375 | | 60.0 | 2.07 | 0.375 | | 47.5 | 2.42 | | -0.02 | 0.0 | 1.04 | 0.34 | | 00 | 100 | | -0.02 | | 0.99 | 0.175 | -0.04 | | 1.28 | | -0.02 | 0.0 | 1.04 | 0.24 | | | 182 | 0.375 | | 60.0 | 1.98 | 0.375 | | 47.5 | 2.29 | | -0.02 | | 0.98 | 0.31 | | 100 | | 0.375 | | 60.0 | 1.99 | 0.375 | 0.04 | | 2.32 | 0.275 | 0.00 | 0.0 | 0.98 | 0.33 | | 101 | | 0.375 | | 57.5 | 1.91 | 0.350 | | 37.5 | 2.22 | 0.275 | 0.00 | 0.0 | 0.89 | 0.31 | | 102 | 100 | $0.375 \\ 0.375$ | | 60.0 | 1.93 | $0.350 \\ 0.350$ | | 42.5 | $\frac{2.51}{2.51}$ | $0.050 \\ 0.300$ | -0.02 0.02 | | 1.35 | 0.57 | | | | | | 60.0 | 1.93 | | | 42.5 | $\frac{2.51}{1.68}$ | | | 0.0 | 0.99 | 0.57 | | 109 | 196 | $0.050 \\ 0.375$ | -0.02 | | 1.35 | $0.150 \\ 0.325$ | -0.02 | | 1.68 | 0.300 | $0.02 \\ -0.02$ | 0.0 | 0.99 1.31 | 0.34 | | 103 | 100 | $\begin{array}{c} 0.375 \\ 0.375 \end{array}$ | | 60.0 | 1.76 | 0.325 0.325 | 0.02 | | 2.49 | $0.075 \\ 0.275$ | -0.02 0.02 | | 0.86 | 0.73 | | | | | | 60.0
57.5 | 1.76 | | | 47.5 | $\frac{2.49}{1.53}$ | 0.275 0.275 | 0.02 0.02 | 0.0 | | 0.73 | | | | 0.075 | −u.u2 | 6.16 | 1.31 |
0.175 | 0.00 | 10.0 | 1.53 | 0.275 | 0.02 | 0.0 | 0.86 | 0.22 | ${\bf Table} \ ({\rm continued})$ | Nuc | leus | | Mini | mum | | | Sad | ldle | | | Mini | mum | | S.H. | |----------------|----------------|--------------|--------------|----------|-------|--------------|--------------|----------|-------|--------------|--------------|----------|--------|---------------| | \overline{N} | \overline{A} | ϵ_2 | ϵ_4 | γ | E | ϵ_2 | ϵ_4 | γ | E | ϵ_2 | ϵ_4 | γ | E | $E_{\rm sad}$ | | | | | | | (MeV) | | | | (MeV) | | | | (MeV) | (MeV) | | | = 83 | ` ' | | | | | | | | | | | | | | 104 | 187 | 0.375 | | 60.0 | 1.79 | 0.300 | | 60.0 | 2.39 | 0.275 | 0.02 | 0.0 | 1.05 | 0.61 | | | | 0.375 | | 60.0 | 1.79 | 0.300 | | 60.0 | 2.39 | 0.075 | -0.02 | | 1.10 | 0.61 | | | | 0.375 | 0.06 | 60.0 | 1.79 | 0.300 | | 60.0 | 2.39 | 0.200 | | 60.0 | 1.03 | 0.61 | | | | 0.275 | 0.02 | 0.0 | 1.05 | 0.150 | | 15.0 | 1.49 | 0.075 | -0.02 | | 1.10 | 0.39 | | | | 0.275 | 0.02 | 0.0 | 1.05 | 0.200 | | 37.5 | 1.32 | 0.200 | | 60.0 | 1.03 | 0.27 | | | | 0.075 | | 60.0 | 1.10 | 0.150 | | 15.0 | 1.49 | 0.200 | | 60.0 | 1.03 | 0.39 | | 105 | 188 | 0.375 | | 60.0 | 1.65 | 0.325 | | 60.0 | 2.14 | 0.075 | | 45.0 | 0.94 | 0.49 | | | | 0.375 | 0.06 | | 1.65 | 0.325 | | 60.0 | 2.14 | 0.275 | 0.04 | 0.0 | 0.90 | 0.49 | | | | 0.375 | 0.06 | | 1.65 | 0.325 | | 60.0 | 2.14 | 0.200 | | 60.0 | 0.76 | 0.49 | | | | 0.075 | | | 0.94 | 0.150 | | | 1.24 | 0.275 | 0.04 | 0.0 | 0.90 | 0.30 | | | | 0.075 | | | 0.94 | 0.150 | | | 1.24 | 0.200 | | 60.0 | 0.76 | 0.30 | | | | 0.275 | 0.04 | 0.0 | 0.90 | 0.200 | | 37.5 | 1.16 | 0.200 | | 60.0 | 0.76 | 0.26 | | 106 | 189 | 0.375 | 0.06 | | 1.69 | 0.325 | | 60.0 | 2.12 | 0.225 | | 17.5 | 0.88 | 0.43 | | | | 0.375 | 0.06 | | 1.69 | 0.325 | | 60.0 | 2.12 | 0.075 | -0.02 | | 0.63 | 0.43 | | | | 0.375 | | 60.0 | 1.69 | 0.325 | | 60.0 | 2.12 | 0.200 | | 60.0 | 0.45 | 0.43 | | | | 0.225 | | 17.5 | 0.88 | 0.200 | | 32.5 | 1.09 | 0.075 | -0.02 | | 0.63 | 0.21 | | | | 0.225 | | 17.5 | 0.88 | 0.200 | | 32.5 | 1.09 | 0.200 | | 60.0 | 0.45 | 0.21 | | | | 0.075 | | 45.0 | 0.63 | 0.150 | | 60.0 | 0.95 | 0.200 | | 60.0 | 0.45 | 0.32 | | 107 | 190 | 0.375 | | 60.0 | 1.60 | 0.325 | | 60.0 | 1.98 | 0.200 | | 20.0 | 0.63 | 0.38 | | | | 0.375 | 0.06 | | 1.60 | 0.325 | | 60.0 | 1.98 | 0.075 | -0.02 | 2.5 | 0.36 | 0.38 | | | | 0.375 | 0.06 | 60.0 | 1.60 | 0.325 | 0.04 | 60.0 | 1.98 | 0.200 | 0.00 | 60.0 | 0.16 | 0.38 | | | | 0.200 | 0.02 | 20.0 | 0.63 | 0.150 | 0.00 | 12.5 | 0.89 | 0.075 | -0.02 | 2.5 | 0.36 | 0.26 | | | | 0.200 | 0.02 | 20.0 | 0.63 | 0.150 | 0.00 | 12.5 | 0.89 | 0.200 | 0.00 | 60.0 | 0.16 | 0.26 | | | | 0.075 | -0.02 | 2.5 | 0.36 | 0.150 | 0.00 | 60.0 | 0.69 | 0.200 | 0.00 | 60.0 | 0.16 | 0.33 | | 108 | 191 | 0.075 | -0.02 | 2.5 | -0.06 | 0.125 | 0.00 | 60.0 | 0.34 | 0.200 | 0.00 | 60.0 | -0.08 | 0.40 | | 109 | 192 | 0.400 | 0.02 | 0.0 | 2.02 | 0.325 | 0.02 | 0.0 | 2.35 | 0.200 | 0.00 | 60.0 | -0.34 | 0.33 | | | | 0.400 | 0.02 | 0.0 | 2.02 | 0.325 | 0.02 | 0.0 | 2.35 | 0.075 | -0.02 | 0.0 | -0.44 | 0.33 | | | | 0.200 | 0.00 | 60.0 | -0.34 | 0.125 | 0.00 | 60.0 | 0.02 | 0.075 | -0.02 | 0.0 | -0.44 | 0.36 | | 110 | 193 | 0.425 | 0.02 | 0.0 | 1.86 | 0.325 | 0.04 | 0.0 | 2.64 | 0.050 | 0.00 | 60.0 | -0.94 | 0.78 | | 111 | 194 | 0.425 | 0.02 | 0.0 | 1.59 | 0.300 | 0.02 | 5.0 | 2.90 | 0.175 | 0.00 | 60.0 | -0.95 | 1.31 | | | | 0.425 | 0.02 | 0.0 | 1.59 | 0.300 | 0.02 | 5.0 | 2.90 | 0.075 | | 17.5 | -1.42 | 1.31 | | | | 0.175 | 0.00 | 60.0 | -0.95 | 0.150 | 0.00 | | -0.72 | 0.075 | | 17.5 | -1.42 | 0.23 | | 114 | 197 | 0.425 | 0.02 | 0.0 | 1.08 | 0.275 | 0.02 | 15.0 | 3.95 | 0.050 | 0.00 | 30.0 | -3.34 | 2.87 | | 115 | 198 | 0.425 | 0.02 | 0.0 | 0.83 | 0.300 | | 20.0 | 4.24 | 0.050 | 0.00 | 55.0 | -3.96 | 3.41 | | 116 | 199 | 0.425 | 0.04 | 60.0 | 1.34 | 0.325 | 0.00 | 20.0 | 4.59 | 0.425 | | 0.0 | 0.81 | 3.25 | | | | 0.425 | 0.04 | 60.0 | 1.34 | 0.375 | 0.02 | 60.0 | 1.62 | 0.050 | 0.00 | 57.5 | -4.75 | 0.28 | | | | 0.425 | 0.04 | 0.0 | 0.81 | 0.325 | | 20.0 | 4.59 | 0.050 | | 57.5 | -4.75 | 3.79 | | 117 | 200 | 0.425 | 0.04 | 60.0 | 1.02 | 0.325 | 0.00 | 20.0 | 4.72 | 0.425 | 0.04 | 0.0 | 0.52 | 3.70 | | | | 0.425 | 0.04 | 60.0 | 1.02 | 0.375 | 0.00 | 60.0 | 1.30 | 0.050 | 0.00 | 60.0 | -5.45 | 0.28 | | | | 0.425 | 0.04 | 0.0 | 0.52 | 0.325 | 0.00 | 20.0 | 4.72 | 0.050 | 0.00 | 60.0 | -5.45 | 4.20 | | 118 | 201 | 0.425 | 0.04 | 0.0 | 0.48 | 0.300 | 0.00 | 20.0 | 4.93 | 0.050 | 0.00 | 57.5 | -6.29 | 4.44 | | 119 | 202 | 0.425 | | 0.0 | 0.30 | 0.300 | | 20.0 | 5.00 | 0.050 | 0.00 | 55.0 | -7.12 | 4.70 | | 120 | | 0.425 | 0.04 | 0.0 | 0.43 | 0.325 | 0.00 | 22.5 | 5.13 | 0.050 | 0.00 | 60.0 | -7.92 | 4.70 | | 121 | | 0.425 | 0.04 | 0.0 | 0.46 | 0.325 | | 22.5 | 5.11 | 0.050 | 0.00 | 60.0 | -8.90 | 4.65 | | 122 | 205 | 0.425 | 0.04 | 0.0 | 0.69 | 0.325 | 0.00 | 22.5 | 5.17 | 0.025 | 0.00 | 60.0 | -9.70 | 4.49 | | 123 | 206 | 0.425 | 0.04 | 0.0 | 0.79 | 0.350 | 0.00 | 20.0 | 5.05 | 0.025 | 0.00 | 47.5 | -10.65 | 4.26 | | 124 | 207 | 0.425 | 0.04 | 0.0 | 1.08 | 0.350 | 0.00 | 20.0 | 5.06 | 0.025 | 0.00 | 57.5 | -11.55 | 3.98 | | 125 | 208 | 0.425 | 0.06 | 0.0 | 1.00 | 0.375 | 0.00 | 25.0 | 4.97 | 0.025 | 0.00 | 57.5 | -12.51 | 3.96 | | 126 | 209 | 0.425 | 0.06 | 0.0 | 1.11 | 0.350 | 0.00 | 25.0 | 4.76 | 0.000 | 0.00 | 0.0 | -12.78 | 3.65 | | 127 | 210 | 0.425 | 0.06 | 0.0 | 1.02 | 0.400 | 0.02 | 22.5 | 4.52 | 0.025 | 0.00 | 60.0 | -11.80 | 3.50 | | | | | | | | | | | | | , | | | | ${\bf Table} \ ({\rm continued})$ | Nuc | leus | | Mini | mum | | | Sac | ldle | | | Mini | mum | | S.H. | |-----|--------|--------------|--------------|----------|-------|--------------|--------------|----------|-------|--------------|--------------|----------|--------|---------------| | N | A | ϵ_2 | ϵ_4 | γ | E | ϵ_2 | ϵ_4 | γ | E | ϵ_2 | ϵ_4 | γ | E | $E_{\rm sad}$ | | | | | | | (MeV) | | | | (MeV) | | | | (MeV) | (MeV) | | | 7 = 83 | ` ' | | | | | | | | | | | | | | 128 | | 0.425 | 0.06 | 0.0 | 1.11 | 0.350 | | 22.5 | 4.47 | 0.000 | 0.00 | | -10.73 | 3.36 | | | 212 | 0.425 | 0.06 | 0.0 | 1.01 | 0.375 | | 20.0 | 4.17 | 0.025 | | 60.0 | -9.49 | 3.16 | | | 213 | 0.425 | 0.08 | 0.0 | 1.06 | 0.375 | | 20.0 | 4.16 | 0.025 | | 57.5 | -8.22 | 3.10 | | | 214 | 0.425 | 0.08 | 0.0 | 0.80 | 0.375 | | 17.5 | 3.94 | 0.025 | | 55.0 | -7.10 | 3.15 | | | 215 | 0.425 | 0.08 | 0.0 | 0.82 | 0.350 | | 17.5 | 3.99 | 0.025 | | 60.0 | -5.98 | 3.17 | | 133 | 216 | 0.350 | 0.02 | | 1.66 | 0.350 | | 20.0 | 3.75 | 0.425 | 0.08 | 0.0 | 0.66 | 2.09 | | | | 0.350 | 0.02 | | 1.66 | 0.275 | | 52.5 | 1.99 | 0.025 | | 57.5 | -4.92 | 0.32 | | | | 0.425 | 0.08 | 0.0 | 0.66 | 0.350 | | 20.0 | 3.75 | 0.025 | | 57.5 | -4.92 | 3.09 | | 134 | 217 | 0.350 | 0.02 | | 1.92 | 0.325 | | 20.0 | 3.77 | 0.425 | 0.08 | 0.0 | 0.78 | 1.85 | | | | 0.350 | 0.02 | | 1.92 | 0.275 | | 50.0 | 2.36 | 0.025 | | 57.5 | -3.96 | 0.44 | | | | 0.425 | 0.08 | 0.0 | 0.78 | 0.325 | | 20.0 | 3.77 | 0.025 | | 57.5 | -3.96 | 2.99 | | 135 | 218 | 0.350 | 0.02 | | 1.92 | 0.325 | | 17.5 | 3.44 | 0.425 | 0.08 | 0.0 | 0.81 | 1.52 | | | | 0.350 | 0.02 | | 1.92 | 0.275 | | 45.0 | 2.48 | 0.050 | | 0.0 | -3.05 | 0.56 | | | | 0.425 | 0.08 | 0.0 | 0.81 | 0.325 | | 17.5 | 3.44 | 0.050 | | 0.0 | -3.05 | 2.63 | | 136 | 219 | 0.350 | 0.02 | | 2.19 | 0.300 | | 15.0 | 3.43 | 0.425 | 0.08 | 0.0 | 1.21 | 1.23 | | | | 0.350 | 0.02 | | 2.19 | 0.275 | | 42.5 | 2.69 | | -0.02 | 0.0 | -2.27 | 0.49 | | | | 0.425 | 0.08 | 0.0 | 1.21 | 0.300 | | 15.0 | 3.43 | | -0.02 | 0.0 | -2.27 | 2.22 | | 137 | 220 | 0.350 | 0.02 | | 2.15 | 0.300 | | 12.5 | 3.20 | 0.425 | 0.08 | 0.0 | 1.39 | 1.05 | | | | 0.350 | 0.02 | | 2.15 | 0.300 | | 37.5 | 2.52 | | -0.04 | 0.0 | -1.62 | 0.37 | | | | 0.425 | 0.08 | 0.0 | 1.39 | 0.300 | | 12.5 | 3.20 | | -0.04 | 0.0 | -1.62 | 1.80 | | 138 | | 0.425 | 0.06 | 0.0 | 1.83 | 0.325 | | 10.0 | 3.34 | | -0.04 | 0.0 | -0.99 | 1.51 | | | 222 | 0.425 | 0.06 | 0.0 | 2.10 | 0.325 | 0.02 | 7.5 | 3.16 | | -0.06 | 0.0 | -0.60 | 1.06 | | | 223 | 0.425 | 0.06 | 0.0 | 2.49 | 0.325 | 0.02 | 5.0 | 3.33 | | -0.06 | 0.0 | -0.21 | 0.84 | | | 224 | 0.400 | 0.06 | 0.0 | 2.65 | 0.325 | | 10.0 | 3.21 | | -0.06 | 0.0 | -0.22 | 0.56 | | | 225 | 0.400 | 0.06 | 0.0 | 3.03 | 0.325 | 0.02 | 5.0 | 3.45 | | -0.06 | 0.0 | 0.07 | 0.42 | | | 226 | 0.400 | 0.06 | 0.0 | 3.17 | 0.350 | 0.06 | 0.0 | 3.49 | | -0.06 | 0.0 | 0.09 | 0.32 | | | 227 | 0.400 | 0.06 | 0.0 | 3.53 | 0.350 | | 10.0 | 3.77 | | -0.04 | 0.0 | 0.43 | 0.25 | | | 243 | | -0.02 | 0.0 | 2.88 | 0.300 | 0.00 | 0.0 | 3.24 | 0.175 | 0.04 | 12.5 | -0.69 | 0.37 | | | | (Po) | | | | | | | | | | | | | | | 181 | 0.425 | 0.06 | 5.0 | 2.07 | 0.375 | 0.04 | 0.0 | 2.50 | | -0.04 | | 0.83 | 0.43 | | | 182 | 0.425 | 0.06 | 5.0 | 2.26 | 0.400 | 0.06 | 2.5 | 2.47 | | -0.02 | | 0.85 | 0.21 | | | 186 | 0.375 | 0.04 | 52.5 | 2.30 | 0.350 | | 42.5 | 2.54 | 0.300 | 0.02 | 0.0 | 0.76 | 0.24 | | | 187 | 0.375 | | 50.0 | 2.14 | 0.325 | | 42.5 | 2.58 | 0.300 | 0.02 | 0.0 | 0.76 | 0.43 | | 104 | | 0.375 | 0.04 | | 2.20 | 0.325 | | 42.5 | 2.69 | 0.275 | 0.02 | 0.0 | 0.96 | 0.49 | | 105 | 189 | 0.375 | 0.06 | | 2.09 | 0.325 | | 45.0 | 2.53 | 0.225 | 0.00 | 60.0 | 1.23 | 0.44 | | | | 0.375 | | 60.0 | 2.09 | 0.325 | | 45.0 | 2.53 | 0.275 | 0.04 | 0.0 | 0.90 | 0.44 | | | | 0.225 | | 60.0 | 1.23 | 0.225 | | 42.5 | 1.45 | 0.275 | 0.04 | 0.0 | 0.90 | 0.22 | | 106 | 190 | 0.375 | | 60.0 | 2.12 | 0.325 | | 60.0 | 2.41 | 0.225 | | 17.5 | 1.02 | 0.30 | | | | 0.375 | | 60.0 | 2.12 | 0.325 | | 60.0 | 2.41 | 0.225 | | 60.0 | 0.92 | 0.30 | | | | 0.225 | | 17.5 | 1.02 | 0.225 | | 35.0 | 1.38 | 0.225 | | 60.0 | 0.92 | 0.37 | | 107 | 191 | 0.375 | | 60.0 | 2.03 | 0.325 | | 60.0 | 2.27 | 0.250 | | 12.5 | 0.82 | 0.24 | | | | 0.375 | 0.06 | | 2.03 | 0.325 | | 60.0 | 2.27 | 0.200 | | 60.0 | 0.59 | 0.24 | | | | 0.250 | 0.04 | | 0.82 | 0.200 | | 32.5 | 1.17 | 0.200 | | 60.0 | 0.59 | 0.36 | | 108 | | 0.100 | |
2.5 | 0.90 | | -0.02 | | 1.12 | 0.200 | | 60.0 | 0.35 | 0.22 | | | 193 | 0.100 | | 0.0 | 0.53 | | -0.02 | | 0.82 | 0.200 | | 60.0 | 0.08 | 0.29 | | 110 | 194 | 0.425 | 0.02 | 0.0 | 2.00 | 0.350 | 0.02 | 0.0 | 2.39 | 0.075 | 0.00 | 0.0 | 0.06 | 0.40 | | | | 0.425 | 0.02 | 0.0 | 2.00 | 0.350 | 0.02 | 0.0 | 2.39 | 0.200 | | 60.0 | -0.17 | 0.40 | | | | 0.075 | 0.00 | 0.0 | 0.06 | 0.125 | | 40.0 | 0.40 | 0.200 | | 60.0 | -0.17 | 0.34 | | 111 | 195 | 0.425 | 0.02 | 0.0 | 1.72 | 0.300 | 0.02 | 7.5 | 2.67 | 0.075 | 0.00 | 2.5 | -0.41 | 0.94 | | | | 0.425 | 0.02 | 0.0 | 1.72 | 0.300 | 0.02 | 7.5 | 2.67 | 0.200 | 0.00 | 60.0 | -0.46 | 0.94 | ${\bf Table} \ ({\rm continued})$ | Nucleus | | Minir | num | | | Sad | ldle | | | Mini | mum | | S.H. | |--------------------|--------------|--------------|----------|-------|--------------|--------------|----------|-------|--------------|--------------|----------|--------|---------------| | \overline{N} A | ϵ_2 | ϵ_4 | γ | E | ϵ_2 | ϵ_4 | γ | E | ϵ_2 | ϵ_4 | γ | E | $E_{\rm sad}$ | | | | | | (MeV) | | | | (MeV) | | | | (MeV) | (MeV) | | Z = 84 | ` ' | | | | | | | | | | | | | | $111 \ 195$ | 0.075 | 0.00 | 2.5 | -0.41 | 0.125 | | 40.0 | -0.05 | 0.200 | | 60.0 | -0.46 | 0.35 | | 114 198 | 0.425 | 0.02 | 0.0 | 1.22 | 0.275 | | 17.5 | 3.84 | 0.075 | | 12.5 | -2.23 | 2.62 | | $115 \ 199$ | 0.425 | | 60.0 | 1.71 | 0.300 | | 15.0 | 4.12 | 0.425 | 0.02 | 0.0 | 0.98 | 2.41 | | | 0.425 | | 60.0 | 1.71 | 0.375 | | 60.0 | 2.07 | 0.075 | | 15.0 | -2.87 | 0.36 | | | 0.425 | 0.02 | 0.0 | 0.98 | 0.300 | | 15.0 | 4.12 | 0.075 | | 15.0 | -2.87 | 3.15 | | 116 200 | 0.425 | | 60.0 | 1.55 | 0.300 | | 22.5 | 4.43 | 0.425 | 0.04 | 0.0 | 0.91 | 2.88 | | | 0.425 | | 60.0 | 1.55 | 0.375 | | 60.0 | 2.03 | 0.050 | | 10.0 | -3.61 | 0.48 | | | 0.425 | 0.04 | 0.0 | 0.91 | 0.300 | | 22.5 | 4.43 | 0.050 | | 10.0 | -3.61 | 3.52 | | 117 201 | 0.425 | | 60.0 | 1.23 | 0.300 | | 22.5 | 4.53 | 0.425 | 0.04 | 0.0 | 0.62 | 3.30 | | | 0.425 | 0.04 | 60.0 | 1.23 | 0.375 | 0.00 | 60.0 | 1.68 | 0.050 | 0.00 | 0.0 | -4.32 | 0.46 | | | 0.425 | 0.04 | 0.0 | 0.62 | 0.300 | 0.00 | | 4.53 | 0.050 | 0.00 | 0.0 | -4.32 | 3.91 | | $118 \ 202$ | 0.425 | 0.04 | 60.0 | 1.25 | 0.325 | 0.00 | 20.0 | 4.77 | 0.425 | 0.04 | 0.0 | 0.58 | 3.52 | | | 0.425 | 0.04 | 60.0 | 1.25 | 0.375 | 0.00 | 60.0 | 1.54 | 0.050 | 0.00 | 60.0 | -5.13 | 0.29 | | | 0.425 | 0.04 | 0.0 | 0.58 | 0.325 | 0.00 | 20.0 | 4.77 | 0.050 | 0.00 | 60.0 | -5.13 | 4.18 | | 119 203 | 0.425 | 0.04 | 0.0 | 0.40 | 0.350 | 0.00 | 22.5 | 4.86 | 0.050 | 0.00 | 50.0 | -5.96 | 4.46 | | $120 \ 204$ | 0.425 | 0.04 | 0.0 | 0.53 | 0.350 | 0.00 | 22.5 | 5.04 | 0.050 | 0.00 | 60.0 | -6.75 | 4.51 | | $121 \ 205$ | 0.425 | 0.04 | 0.0 | 0.55 | 0.325 | 0.00 | 22.5 | 4.97 | 0.050 | 0.00 | 60.0 | -7.73 | 4.42 | | $122 \ 206$ | 0.425 | 0.04 | 0.0 | 0.79 | 0.325 | 0.00 | 22.5 | 5.03 | 0.000 | 0.00 | 0.0 | -8.56 | 4.24 | | $123 \ 207$ | 0.425 | 0.04 | 2.5 | 0.89 | 0.325 | 0.00 | 22.5 | 4.93 | 0.025 | 0.00 | 0.0 | -9.51 | 4.04 | | $124 \ 208$ | 0.425 | 0.06 | 0.0 | 1.09 | 0.325 | 0.00 | 22.5 | 4.90 | 0.000 | 0.00 | 0.0 | -10.50 | 3.81 | | $125 \ 209$ | 0.425 | 0.06 | 0.0 | 1.02 | 0.325 | 0.00 | 22.5 | 4.73 | 0.000 | 0.00 | 0.0 | -11.52 | 3.71 | | $126 \ 210$ | 0.425 | 0.06 | 0.0 | 1.15 | 0.350 | 0.00 | 25.0 | 4.63 | 0.000 | 0.00 | 0.0 | -11.78 | 3.48 | | 127 211 | 0.425 | 0.06 | 0.0 | 1.05 | 0.350 | 0.00 | 22.5 | 4.43 | 0.000 | 0.00 | 0.0 | -10.70 | 3.38 | | $128 \ \ 212$ | 0.425 | 0.06 | 0.0 | 1.15 | 0.350 | 0.00 | 22.5 | 4.27 | 0.000 | 0.00 | 0.0 | -9.74 | 3.12 | | $129 \ 213$ | 0.425 | 0.08 | 0.0 | 0.98 | 0.375 | 0.02 | 20.0 | 3.96 | 0.000 | 0.00 | 0.0 | -8.39 | 2.98 | | $130 \ 214$ | 0.425 | 0.08 | 0.0 | 0.98 | 0.375 | 0.02 | 20.0 | 3.96 | 0.000 | 0.00 | 0.0 | -7.21 | 2.98 | | $131 \ 215$ | 0.425 | 0.08 | 0.0 | 0.70 | 0.350 | 0.00 | 20.0 | 3.74 | 0.000 | 0.00 | 0.0 | -6.03 | 3.03 | | $132 \ 216$ | 0.425 | 0.08 | 0.0 | 0.75 | 0.375 | 0.02 | 20.0 | 3.77 | 0.000 | 0.00 | 0.0 | -4.93 | 3.03 | | $133 \ 217$ | 0.325 | 0.00 | 50.0 | 1.91 | 0.350 | 0.00 | 30.0 | 3.57 | 0.425 | 0.08 | 0.0 | 0.58 | 1.65 | | | 0.325 | 0.00 | 50.0 | 1.91 | 0.275 | 0.00 | 47.5 | 2.14 | 0.000 | 0.00 | 0.0 | -3.87 | 0.23 | | | 0.425 | 0.08 | 0.0 | 0.58 | 0.350 | 0.00 | 30.0 | 3.57 | 0.000 | 0.00 | 0.0 | -3.87 | 2.99 | | $134 \ 218$ | 0.350 | 0.02 | 50.0 | 2.21 | 0.300 | -0.02 | 22.5 | 3.56 | 0.425 | 0.08 | 0.0 | 0.69 | 1.35 | | | 0.350 | 0.02 | 50.0 | 2.21 | 0.275 | 0.00 | 45.0 | 2.47 | 0.000 | 0.00 | 0.0 | -2.89 | 0.26 | | | 0.425 | 0.08 | 0.0 | 0.69 | 0.300 | -0.02 | 22.5 | 3.56 | 0.000 | 0.00 | 0.0 | -2.89 | 2.87 | | $135 \ 219$ | 0.350 | 0.02 | 50.0 | 2.16 | 0.300 | -0.02 | 20.0 | 3.26 | 0.425 | 0.08 | 0.0 | 0.72 | 1.10 | | | 0.350 | 0.02 | 50.0 | 2.16 | 0.275 | 0.00 | 40.0 | 2.51 | 0.075 | -0.04 | 0.0 | -2.16 | 0.35 | | | 0.425 | 0.08 | 0.0 | 0.72 | 0.300 | -0.02 | 20.0 | 3.26 | 0.075 | -0.04 | 0.0 | -2.16 | 2.54 | | 136 220 | 0.350 | 0.02 | 47.5 | 2.37 | 0.325 | 0.02 | 15.0 | 3.24 | 0.425 | 0.08 | 0.0 | 1.14 | 0.87 | | | 0.350 | 0.02 | 47.5 | 2.37 | 0.300 | 0.00 | 40.0 | 2.66 | 0.075 | -0.04 | 0.0 | -1.42 | 0.29 | | | 0.425 | 0.08 | 0.0 | 1.14 | 0.325 | 0.02 | 15.0 | 3.24 | 0.075 | -0.04 | 0.0 | -1.42 | 2.10 | | 137 221 | 0.350 | 0.02 | 45.0 | 2.26 | 0.325 | 0.02 | 12.5 | 2.98 | 0.425 | 0.08 | 0.0 | 1.33 | 0.72 | | | 0.350 | 0.02 | 45.0 | 2.26 | 0.300 | 0.00 | 37.5 | 2.49 | 0.100 | -0.06 | 0.0 | -1.05 | 0.23 | | | 0.425 | 0.08 | 0.0 | 1.33 | 0.325 | | 12.5 | 2.98 | 0.100 | -0.06 | 0.0 | -1.05 | 1.65 | | $138 \ 222$ | 0.425 | 0.08 | 0.0 | 1.85 | 0.325 | | 10.0 | 3.10 | | -0.06 | 0.0 | -0.51 | 1.25 | | 139 223 | 0.375 | 0.06 | 0.0 | 2.00 | 0.300 | | 10.0 | 2.93 | | -0.08 | 0.0 | -0.43 | 0.93 | | 140 224 | 0.375 | 0.06 | 0.0 | 2.42 | 0.300 | 0.00 | 7.5 | 3.12 | | -0.06 | 0.0 | -0.06 | 0.69 | | 141 225 | 0.400 | 0.06 | 0.0 | 2.64 | 0.325 | 0.02 | 2.5 | 2.97 | | -0.06 | 0.0 | -0.11 | 0.33 | | $142 \ 226$ | 0.375 | 0.06 | 0.0 | 2.95 | 0.350 | 0.04 | | 3.27 | | -0.06 | 0.0 | 0.19 | 0.31 | | $143 \ 227$ | 0.375 | 0.06 | 0.0 | 3.08 | 0.350 | | 10.0 | 3.40 | | -0.06 | 7.5 | 0.19 | 0.32 | | 160 244 | 0.350 | | 0.0 | 2.85 | 0.300 | 0.00 | 0.0 | 3.18 | 0.175 | 0.04 | 7.5 | -0.33 | 0.33 | | | | | | | | | | - | | | | | + ===== | ${\bf Table} \ ({\rm continued})$ | Nuc | cleus | | Mini | mum | | | Sad | ldle | | | Mini | mum | | S.H. | |----------------|-------|--------------|--------------|----------|-------|--------------|--------------|----------|-------|--------------|--------------|----------|--------|---------------| | \overline{N} | A | ϵ_2 | ϵ_4 | γ | E | ϵ_2 | ϵ_4 | γ | E | ϵ_2 | ϵ_4 | γ | E | $E_{\rm sad}$ | | | | | | , | (MeV) | | | , | (MeV) | | | , | (MeV) | (MeV) | | Z | Z = 8 | 5 (At) | | | | | | | | | | | | <u> </u> | | 104 | 189 | 0.400 | 0.04 | 50.0 | 2.20 | 0.325 | 0.02 | 42.5 | 2.52 | 0.350 | 0.02 | 0.0 | 0.69 | 0.33 | | 105 | 190 | 0.400 | 0.04 | 50.0 | 2.10 | 0.325 | 0.02 | 45.0 | 2.42 | 0.275 | 0.02 | 0.0 | 0.73 | 0.33 | | 106 | 191 | 0.375 | 0.04 | 50.0 | 2.23 | 0.325 | 0.04 | 60.0 | 2.46 | 0.250 | 0.02 | 12.5 | 0.96 | 0.23 | | | | 0.375 | 0.04 | 50.0 | 2.23 | 0.325 | 0.04 | 60.0 | 2.46 | 0.225 | 0.00 | 60.0 | 0.81 | 0.23 | | | | 0.250 | 0.02 | 12.5 | 0.96 | 0.225 | 0.00 | 35.0 | 1.23 | 0.225 | 0.00 | 60.0 | 0.81 | 0.27 | | 107 | 192 | 0.225 | 0.02 | 17.5 | 0.77 | 0.225 | 0.00 | 35.0 | 1.10 | 0.225 | 0.00 | 60.0 | 0.50 | 0.33 | | 110 | 195 | 0.400 | 0.02 | 0.0 | 1.89 | 0.300 | 0.02 | 10.0 | 2.10 | 0.100 | -0.02 | 0.0 | 0.54 | 0.22 | | | | 0.400 | 0.02 | 0.0 | 1.89 | 0.300 | 0.02 | 10.0 | 2.10 | 0.200 | 0.00 | 60.0 | -0.10 | 0.22 | | | | 0.100 | -0.02 | 0.0 | 0.54 | 0.150 | 0.00 | 30.0 | 0.76 | 0.200 | 0.00 | 60.0 | -0.10 | 0.22 | | 111 | 196 | 0.400 | 0.02 | 0.0 | 1.77 | 0.275 | 0.04 | 15.0 | 2.41 | 0.100 | -0.02 | 0.0 | 0.09 | 0.65 | | | | 0.400 | 0.02 | 0.0 | 1.77 | 0.275 | 0.04 | 15.0 | 2.41 | 0.200 | 0.00 | 60.0 | -0.40 | 0.65 | | | | 0.100 | -0.02 | 0.0 | 0.09 | 0.150 | 0.00 | 30.0 | 0.31 | 0.200 | 0.00 | 60.0 | -0.40 | 0.22 | | 112 | 197 | 0.400 | 0.04 | 60.0 | 2.40 | 0.375 | 0.04 | 60.0 | 2.60 | 0.100 | 0.00 | 0.0 | -0.42 | 0.20 | | | | 0.400 | 0.04 | 60.0 | 2.40 | 0.375 | 0.04 | 60.0 | 2.60 | 0.200 | 0.00 | 60.0 | -0.68 | 0.20 | | | | 0.100 | 0.00 | 0.0 | -0.42 | 0.150 | 0.00 | 40.0 | -0.14 | 0.200 | 0.00 | 60.0 | -0.68 | 0.28 | | 113 | 198 | 0.425 | 0.04 | 60.0 | 2.18 | 0.375 | 0.02 | 60.0 | 2.47 | 0.100 | 0.00 | 0.0 | -0.98 | 0.30 | | | | 0.425 | 0.04 | 60.0 | 2.18 | 0.375 | 0.02 | 60.0 | 2.47 | 0.200 | 0.00 | 60.0 | -1.05 | 0.30 | | | | 0.100 | 0.00 | 0.0 | -0.98 | 0.150 | 0.00 | 42.5 | -0.68 | 0.200 | 0.00 | 60.0 | -1.05 | 0.30 | | 114 | 199 | 0.425 | 0.04 | 60.0 | 2.01 | 0.375 | 0.02 | 60.0 | 2.45 | 0.200 | 0.00 | 60.0 | -1.37 | 0.44 | | | | 0.425 | 0.04 | 60.0 | 2.01 | 0.375 | 0.02 | 60.0 | 2.45 | 0.100 | 0.00 | 20.0 | -1.51 | 0.44 | | | | 0.200 | 0.00 | 60.0 | -1.37 | 0.150 | 0.00 | 55.0 | -1.16 | 0.100 | 0.00 | 20.0 | -1.51 | 0.21 | | 115 | 200 | 0.425 | 0.04 | 60.0 | 1.61 | 0.300 | 0.02 | 17.5 | 3.86 | 0.425 | 0.02 | 0.0 | 1.01 | 2.26 | | | | 0.425 | 0.04 | 60.0 | 1.61 | 0.375 | 0.02 | 60.0 | 2.24 | 0.100 | 0.00 | 20.0 | -2.13 | 0.63 | | | | 0.425 | 0.02 | 0.0 | 1.01 | 0.300 | 0.02 | 17.5 | 3.86 | 0.100 | 0.00 | 20.0 | -2.13 | 2.86 | | 116 | 201 | 0.425 | 0.04 | 60.0 | 1.43 | 0.325 | 0.00 | 22.5 | 4.18 | 0.400 | 0.02 | 0.0 | 0.90 | 2.75 | | | | 0.425 | 0.04 | 60.0 | 1.43 | 0.375 | 0.00 | 60.0 | 2.15 | 0.075 | 0.00 | 30.0 | -2.80 | 0.72 | | | | 0.400 | 0.02 | 0.0 | 0.90 | 0.325 | 0.00 | 22.5 | 4.18 | 0.075 | 0.00 | 30.0 | -2.80 | 3.29 | | 117 | 202 | 0.400 | 0.02 | 0.0 | 0.64 | 0.300 | 0.00 | 22.5 | 4.28 | 0.075 | 0.00 | 0.0 | -3.46 | 3.64 | | 118 | 203 | 0.400 | 0.02 | 0.0 | 0.56 | 0.300 | 0.00 | 22.5 | 4.44 | 0.075 | 0.00 | 60.0 | -4.29 | 3.88 | | 119 | 204 | 0.400 | 0.02 | 0.0 | 0.43 | 0.325 | 0.00 | 20.0 | 4.51 | 0.075 | 0.00 | 60.0 |
-5.11 | 4.08 | | 120 | 205 | 0.425 | 0.04 | 0.0 | 0.63 | 0.325 | 0.00 | 20.0 | 4.65 | 0.075 | 0.00 | 60.0 | -5.85 | 4.02 | | 121 | 206 | 0.425 | 0.04 | 0.0 | 0.67 | 0.325 | 0.00 | 20.0 | 4.64 | 0.075 | 0.00 | 60.0 | -6.79 | 3.97 | | 122 | 207 | 0.425 | 0.04 | 0.0 | 0.89 | 0.325 | 0.00 | 20.0 | 4.69 | 0.050 | 0.00 | 60.0 | -7.54 | 3.80 | | 123 | 208 | 0.425 | 0.04 | 2.5 | 1.00 | 0.325 | 0.00 | 22.5 | 4.61 | 0.050 | 0.00 | 55.0 | -8.44 | 3.61 | | 124 | 209 | 0.425 | 0.06 | 0.0 | 1.11 | 0.350 | 0.00 | 22.5 | 4.62 | 0.025 | 0.00 | 60.0 | -9.26 | 3.51 | | 125 | 210 | 0.425 | 0.06 | 0.0 | 1.06 | 0.350 | 0.00 | 22.5 | 4.42 | 0.025 | 0.00 | 60.0 | -10.19 | 3.37 | | 126 | 211 | 0.425 | 0.06 | 0.0 | 1.17 | 0.325 | 0.00 | 22.5 | 4.32 | 0.000 | 0.00 | 0.0 | -10.45 | 3.15 | | 127 | 212 | 0.425 | 0.06 | 0.0 | 1.09 | 0.350 | 0.00 | 22.5 | 4.08 | 0.025 | 0.00 | 57.5 | -9.47 | 2.99 | | 128 | 213 | 0.425 | 0.08 | 0.0 | 1.09 | 0.350 | 0.00 | 22.5 | 3.93 | 0.000 | 0.00 | 0.0 | -8.43 | 2.85 | | 129 | 214 | 0.425 | 0.08 | 0.0 | 0.85 | 0.350 | 0.00 | 30.0 | 3.68 | 0.025 | 0.00 | 60.0 | -7.21 | 2.83 | | 130 | 215 | 0.425 | 0.08 | 0.0 | 0.87 | 0.375 | 0.00 | 30.0 | 3.67 | 0.025 | 0.00 | 57.5 | -5.96 | 2.81 | | 131 | 216 | 0.425 | 0.08 | 0.0 | 0.60 | 0.375 | 0.02 | 30.0 | 3.47 | 0.025 | 0.00 | 45.0 | -4.84 | 2.87 | | 132 | 217 | 0.425 | 0.08 | 0.0 | 0.63 | 0.375 | | 30.0 | 3.53 | 0.025 | 0.00 | 60.0 | -3.77 | 2.90 | | | 218 | 0.425 | 0.10 | 0.0 | 0.46 | 0.325 | | 22.5 | 3.35 | 0.075 | | 2.5 | -2.96 | 2.88 | | | 219 | 0.425 | 0.10 | 0.0 | 0.51 | | -0.02 | | 3.29 | | -0.04 | 0.0 | -2.18 | 2.78 | | | 220 | 0.350 | | 47.5 | 2.15 | | -0.02 | | 2.95 | 0.425 | 0.08 | 0.0 | 0.61 | 0.80 | | | | 0.350 | | 47.5 | 2.15 | 0.300 | | 42.5 | 2.36 | | -0.06 | 0.0 | -1.77 | 0.21 | | | | 0.425 | 0.08 | 0.0 | 0.61 | | -0.02 | | 2.95 | | -0.06 | 0.0 | -1.77 | 2.34 | | 136 | 221 | 0.425 | 0.08 | 0.0 | 1.02 | 0.325 | | 17.5 | 2.91 | | -0.06 | 0.0 | -1.18 | 1.89 | | | 222 | 0.425 | 0.08 | 0.0 | 1.23 | 0.325 | | 12.5 | 2.61 | | -0.08 | 0.0 | -0.88 | 1.38 | Table (continued) | Nucleus | | Mini | mum | | | Sad | ldle | | | Mini | mum | | S.H. | |---|------------------|----------------|--------------|----------------|---------------|----------------|--------------|---------------------|---------------|---------------|--------------|----------------|----------------| | N A | ϵ_2 | ϵ_4 | γ | E | ϵ_2 | ϵ_4 | γ | E | ϵ_2 | ϵ_4 | γ | E | $E_{\rm sad}$ | | | () | | | (MeV) | | | | (MeV) | | | | (MeV) | (MeV) | | Z = 85 | | 0.00 | 0.0 | 1.05 | 0.205 | 0.00 | 10.0 | 0.70 | 0.105 | 0.00 | 0.0 | 0.50 | 1.05 | | 138 223 | 0.375 | 0.06 | 0.0 | 1.65 | 0.325 | | 10.0 | 2.70 | | -0.08 | 0.0 | -0.50 | 1.05 | | 139 224 | 0.375 | 0.06 | 0.0 | 1.72 | 0.325 | | 10.0 | 2.56 | | -0.08 | 0.0 | -0.47 | 0.84 | | 140 225 | 0.375 | 0.06 | 0.0 | 2.13 | 0.325 | 0.02 | 7.5 | 2.69 | | -0.08 | 0.0 | -0.15 | 0.56 | | $\begin{array}{ccc} 141 & 226 \\ 142 & 227 \end{array}$ | 0.375 | $0.04 \\ 0.06$ | 0.0 | 2.30 | 0.325 0.350 | $0.02 \\ 0.04$ | $5.0 \\ 0.0$ | $2.57 \\ 2.90$ | | -0.08 -0.06 | 0.0 | -0.22 | $0.27 \\ 0.24$ | | 142 227
143 228 | $0.375 \\ 0.375$ | 0.06 | 0.0 | 2.66 | 0.350 | 0.04 0.04 | 7.5 | $\frac{2.90}{3.04}$ | | -0.06 | $0.0 \\ 7.5$ | $0.07 \\ 0.00$ | 0.24 0.26 | | 145 228
160 245 | | -0.00 | $0.0 \\ 0.0$ | $2.79 \\ 2.53$ | 0.300 | 0.04 | 0.0 | $\frac{3.04}{2.88}$ | 0.175 0.175 | -0.00 0.04 | 0.0 | -0.20 | $0.20 \\ 0.35$ | | Z = 86 | | -0.02 | 0.0 | 2.93 | 0.300 | 0.00 | 0.0 | 2.00 | 0.175 | 0.04 | 0.0 | -0.20 | 0.33 | | $2 - 80$ $105 \ 191$ | 0.375 | 0.04 | 47.5 | 2.31 | 0.325 | 0.02 | 45.0 | 2.54 | 0.325 | 0.00 | 0.0 | 0.51 | 0.23 | | 106 192 | 0.400 | | 50.0 | 2.51 | 0.320 | | 47.5 | 2.74 | 0.325 | 0.00 | 0.0 | 0.81 | 0.23 | | 107 193 | 0.225 | | 60.0 | 0.88 | 0.335 | | 35.0 | 1.23 | 0.250 | | 15.0 | 0.76 | 0.25 | | 108 194 | 0.250 | | 15.0 | 0.99 | 0.225 | | 32.5 | 1.23 | 0.225 | | 60.0 | 0.68 | 0.24 | | 110 196 | 0.325 | 0.02 | 0.0 | 1.72 | 0.275 | | 15.0 | 1.94 | 0.225 | | 60.0 | 0.24 | 0.21 | | 111 197 | 0.325 | 0.02 | 0.0 | 1.91 | 0.275 | | 17.5 | 2.30 | 0.225 | | 57.5 | -0.01 | 0.40 | | 112 198 | 0.425 | | 55.0 | 2.82 | 0.375 | | 60.0 | 3.05 | 0.225 | | 60.0 | -0.18 | 0.23 | | 113 199 | 0.425 | | 57.5 | 2.54 | 0.375 | | 60.0 | 2.93 | 0.200 | | 52.5 | -0.50 | 0.39 | | 114 200 | 0.425 | | 60.0 | 2.39 | 0.375 | | 60.0 | 2.91 | 0.200 | | 60.0 | -0.82 | 0.53 | | 115 201 | 0.425 | | 60.0 | 1.97 | 0.300 | | 17.5 | 3.72 | 0.425 | 0.02 | 0.0 | 1.21 | 1.75 | | | 0.425 | | 60.0 | 1.97 | 0.375 | | 60.0 | 2.70 | 0.200 | | 60.0 | -1.29 | 0.73 | | | 0.425 | 0.02 | 0.0 | 1.21 | 0.300 | | 17.5 | 3.72 | 0.200 | | 60.0 | -1.29 | 2.51 | | 116 202 | 0.400 | 0.02 | 0.0 | 1.11 | 0.300 | | 25.0 | 4.05 | 0.100 | | 30.0 | -1.84 | 2.95 | | 117 203 | 0.400 | 0.02 | 0.0 | 0.85 | 0.325 | | 22.5 | 4.15 | 0.100 | | 30.0 | -2.51 | 3.30 | | 118 204 | 0.400 | 0.02 | 0.0 | 0.77 | 0.300 | | 22.5 | 4.33 | 0.100 | | 60.0 | -3.28 | 3.56 | | 119 205 | 0.400 | 0.02 | 0.0 | 0.63 | 0.325 | | 20.0 | 4.35 | 0.100 | | 57.5 | -4.07 | 3.72 | | 120 206 | 0.425 | 0.04 | 0.0 | 0.82 | 0.325 | | 20.0 | 4.50 | 0.100 | | 60.0 | -4.72 | 3.68 | | $121 \ 207$ | 0.425 | 0.04 | 0.0 | 0.85 | 0.325 | | 20.0 | 4.49 | 0.075 | | 60.0 | -5.67 | 3.64 | | 122 208 | 0.425 | 0.04 | 0.0 | 1.08 | 0.325 | 0.00 | 20.0 | 4.54 | 0.050 | 0.00 | 60.0 | -6.30 | 3.46 | | $123 \ 209$ | 0.425 | 0.06 | 2.5 | 1.14 | 0.325 | 0.00 | 22.5 | 4.47 | 0.050 | 0.00 | 55.0 | -7.20 | 3.32 | | $124 \ 210$ | 0.425 | 0.06 | 0.0 | 1.29 | 0.350 | 0.00 | 22.5 | 4.46 | 0.000 | 0.00 | 0.0 | -8.03 | 3.17 | | $125 \ 211$ | 0.425 | 0.06 | 2.5 | 1.24 | 0.325 | 0.00 | 22.5 | 4.27 | 0.000 | 0.00 | 0.0 | -9.04 | 3.03 | | $126 \ 212$ | 0.425 | 0.06 | 2.5 | 1.37 | 0.325 | 0.00 | 22.5 | 4.18 | 0.000 | 0.00 | 0.0 | -9.30 | 2.80 | | $127 \ 213$ | 0.425 | 0.08 | 0.0 | 1.26 | 0.350 | 0.00 | 22.5 | 3.92 | 0.000 | 0.00 | 0.0 | -8.22 | 2.66 | | $128 \ \ 214$ | 0.425 | 0.08 | 0.0 | 1.25 | 0.350 | 0.00 | 27.5 | 3.78 | 0.000 | 0.00 | 0.0 | -7.28 | 2.53 | | $129 \ 215$ | 0.425 | 0.08 | 0.0 | 1.02 | 0.350 | 0.00 | 30.0 | 3.56 | 0.025 | 0.00 | 60.0 | -5.95 | 2.54 | | $130 \ 216$ | 0.425 | 0.08 | 0.0 | 1.02 | 0.350 | 0.00 | 30.0 | 3.58 | 0.000 | 0.00 | 0.0 | -4.80 | 2.55 | | $131 \ 217$ | 0.425 | 0.08 | 0.0 | 0.75 | 0.350 | 0.00 | 32.5 | 3.40 | 0.025 | 0.00 | 2.5 | -3.61 | 2.65 | | $132 \ 218$ | 0.425 | 0.10 | 0.0 | 0.76 | 0.350 | 0.00 | 27.5 | 3.38 | 0.075 | -0.04 | 0.0 | -2.60 | 2.62 | | $133 \ 219$ | 0.425 | 0.10 | 0.0 | 0.50 | 0.300 | -0.02 | 25.0 | 3.22 | 0.075 | -0.06 | 2.5 | -2.04 | 2.72 | | 134 220 | 0.425 | 0.10 | 0.0 | 0.55 | 0.325 | | 22.5 | 3.17 | 0.100 | -0.06 | 0.0 | -1.45 | 2.63 | | $135 \ 221$ | 0.425 | 0.10 | 0.0 | 0.74 | | -0.02 | 22.5 | 2.83 | 0.100 | -0.06 | 0.0 | -1.14 | 2.09 | | $136 \ 222$ | 0.425 | 0.10 | 0.0 | 1.09 | 0.325 | 0.00 | 17.5 | 2.74 | 0.125 | -0.08 | 0.0 | -0.60 | 1.65 | | $137 \ 223$ | 0.425 | 0.08 | 0.0 | 1.36 | 0.300 | 0.00 | 15.0 | 2.44 | 0.125 | -0.08 | 0.0 | -0.63 | 1.08 | | $138 \ 224$ | 0.375 | 0.06 | 0.0 | 1.67 | 0.325 | | 10.0 | 2.52 | | -0.08 | 0.0 | -0.25 | 0.84 | | $139 \ 225$ | 0.375 | 0.06 | 0.0 | 1.73 | 0.300 | | 10.0 | 2.39 | | -0.08 | 0.0 | -0.37 | 0.66 | | 140 226 | 0.375 | 0.06 | 0.0 | 2.14 | 0.325 | 0.02 | | 2.54 | | -0.08 | 0.0 | -0.08 | 0.40 | | 154 240 | 0.425 | | 50.0 | 3.91 | 0.375 | | 50.0 | 4.11 | 0.225 | 0.00 | | 0.20 | 0.20 | | $155 \ 241$ | 0.425 | | 50.0 | 3.79 | 0.375 | | 50.0 | 4.09 | 0.225 | 0.02 | | 0.09 | 0.31 | | 160 246 | | -0.02 | 0.0 | 2.55 | 0.300 | -0.02 | 0.0 | 2.81 | 0.200 | 0.04 | 15.0 | 0.02 | 0.26 | | Z = 87 | ` ' | | | | _ | | | _ | _ | | | _ | | | 105 192 | 0.375 | 0.04 | 47.5 | 2.22 | 0.350 | 0.02 | 45.0 | 2.46 | 0.325 | | 0.0 | 0.09 | 0.23 | Table (continued) | Nuc | leus | | Mini | mum | | | Sac | ldle | | | Mini | mum | | S.H. | |----------------|----------------|------------------|--------------|---------------|---------------------|------------------|----------------|-------------|---------------------|------------------|--------------|--------------|---------------|---------------------| | \overline{N} | \overline{A} | ϵ_2 | ϵ_4 | γ | E | ϵ_2 | ϵ_4 | γ | E | ϵ_2 | ϵ_4 | γ | E | $E_{\rm sad}$ | | | | | | | (MeV) | | | | (MeV) | | | | (MeV) | (MeV) | | | 7 = 87 | ` ' | | | | | | | | | | | | | | | 193 | 0.375 | 0.04 | | 2.44 | 0.350 | 0.02 | 45.0 | 2.65 | 0.325 | 0.00 | 0.0 | 0.38 | 0.21 | | 108 | 195 | 0.250 | | 17.5 | 0.87 | 0.225 | 0.00 | 32.5 | 1.22 | 0.225 | 0.00 | 60.0 | 0.90 | 0.32 | | | | 0.250 | | 17.5 | 0.87 | 0.275 | 0.02 | 10.0 | 1.08 | 0.325 | 0.02 | 0.0 | 0.87 | 0.21 | | 100 | 100 | 0.225 | | 60.0 | 0.90 | 0.225 | 0.00 | 32.5 | 1.22 | 0.325 | 0.02 | 0.0 | 0.87 | 0.32 | | | 196 | 0.325 | 0.02 | 0.0 | 1.02 | 0.275 | 0.02 | 10.0 | 1.27 | 0.225 | 0.00 | | 0.64 | 0.26 | | | 197 | 0.325 | 0.02 | 2.5 | 1.32 | 0.275 | 0.04 | 17.5 | 1.73 | 0.225 | | 57.5 | 0.46 | 0.40 | | 111 | 198 | 0.425 | | 52.5 | 2.78 | 0.375 | 0.04 | 52.5 | 3.15 | 0.325 | 0.02 | 2.5 | 1.50 | 0.37 | | | | 0.425 | | 52.5 | 2.78 | 0.375 | 0.04 | 52.5 | 3.15 | 0.225 | | 55.0 | 0.19 | 0.37 | | 110 | 100 | 0.325 | 0.02 | 2.5 | 1.50 | 0.275 | 0.02 | 12.5 | 2.09 | 0.225 | | 55.0 | 0.19 | 0.59 | | 112 | 199 | 0.425 | | 52.5 | 2.78 | 0.375 | 0.02 | 55.0 | 3.20 | 0.350 | 0.02 | 0.0 | 1.68 | 0.43 | | | | 0.425 | | 52.5 | 2.78 | 0.375 | 0.02 | 55.0 | 3.20 | 0.225 | | 55.0 | 0.05 | 0.43 | | 119 | 200 | 0.350 | 0.02 | $0.0 \\ 55.0$ | 1.68 | 0.275 | 0.02 | 15.0 | 2.60 | 0.225 | | 55.0 | 0.05 | 0.92 | | 113 | 200 | 0.425 | | 55.0 | 2.52 | 0.375 | 0.02 | 60.0 | 3.10 | 0.375 | 0.02 | 0.0 | 1.58 | 0.58 | | | | 0.425 | 0.04 0.02 | | 2.52 | 0.375 | 0.02 | 60.0 | $\frac{3.10}{2.86}$ | 0.225 | | 60.0
60.0 | -0.28 | 0.58 | | 114 | 201 | $0.375 \\ 0.425$ | 0.02 0.04 | 0.0 | 1.58 2.41 | $0.300 \\ 0.300$ | $0.02 \\ 0.00$ |
20.0 20.0 | $\frac{2.86}{3.27}$ | $0.225 \\ 0.375$ | 0.00 | 0.0 | -0.28 1.45 | $1.28 \\ 0.86$ | | 114 | 201 | 0.425 0.425 | | 57.5 | $\frac{2.41}{2.41}$ | 0.300 0.375 | 0.00 | 60.0 | $\frac{3.27}{3.08}$ | 0.375 0.225 | | 55.0 | -0.48 | 0.60 | | | | 0.425 0.375 | 0.04 0.02 | 0.0 | $\frac{2.41}{1.45}$ | 0.373 | 0.02 | 20.0 | $\frac{3.08}{3.27}$ | 0.225 0.225 | | 55.0 | -0.48 -0.48 | 1.82 | | 115 | 202 | 0.375 0.400 | 0.02 | 0.0 | 1.45 1.25 | 0.300 0.275 | 0.00 | 20.0 | $\frac{3.27}{3.43}$ | 0.223 | | 52.5 | -0.48 -0.95 | 2.19 | | | 202 | 0.400 | 0.02 | 0.0 | 1.25 1.07 | 0.273 | 0.00 | 17.5 | 3.43 3.70 | 0.200 | | 60.0 | -0.95 -1.38 | $\frac{2.19}{2.64}$ | | 117 | | 0.400 | 0.02 | 0.0 | 0.82 | 0.325 | 0.00 | 22.5 | 3.80 | 0.200 0.125 | | 50.0 | -1.98 | 2.98 | | | | 0.400 | 0.02 | 0.0 | 0.32 0.73 | 0.325 | 0.00 | 22.5 | 4.01 | 0.125 0.125 | | 60.0 | -2.69 | 3.28 | | 119 | | 0.400 | 0.02 | 0.0 | 0.75 | 0.323 | 0.00 | 22.5 | 4.01 4.02 | 0.125 0.125 | | 60.0 | -2.09 -3.41 | 3.43 | | 120 | | 0.400 | 0.02 | 0.0 | 0.80 | 0.300 | 0.00 | 22.5 | 4.02 4.11 | 0.120 | | 60.0 | -4.06 | 3.43 | | 121 | 208 | 0.400 | 0.02 | 0.0 | 0.91 | 0.325 | 0.00 | 20.0 | 4.11 | 0.100 | | 60.0 | -4.87 | 3.21 | | | 209 | 0.400 | 0.04 | 0.0 | 1.17 | 0.350 | 0.00 | 22.5 | 4.18 | 0.075 | 0.02 | | -5.43 | 3.01 | | | 210 | 0.400 | 0.04 | 5.0 | 1.19 | 0.350 | 0.00 | 22.5 | 4.09 | 0.075 | 0.02 | | -6.27 | 2.90 | | | 211 | 0.425 | 0.06 | 5.0 | 1.36 | 0.325 | 0.00 | 20.0 | 4.05 | 0.025 | | 55.0 | -6.96 | 2.70 | | | 212 | 0.425 | 0.06 | 5.0 | 1.29 | 0.350 | 0.00 | 22.5 | 3.87 | 0.000 | 0.00 | 0.0 | -7.94 | 2.57 | | | 213 | 0.400 | 0.06 | 0.0 | 1.41 | 0.350 | 0.00 | 22.5 | 3.76 | 0.000 | 0.00 | 0.0 | -8.19 | 2.34 | | | 214 | 0.425 | 0.08 | 0.0 | 1.22 | 0.325 | 0.00 | 25.0 | 3.59 | 0.025 | 0.00 | | -7.15 | 2.37 | | | 215 | 0.425 | 0.08 | 0.0 | 1.22 | 0.350 | 0.00 | 27.5 | 3.45 | 0.000 | 0.00 | 0.0 | -6.20 | 2.23 | | | 216 | 0.425 | 0.08 | 0.0 | 0.99 | 0.350 | 0.00 | 30.0 | 3.25 | 0.025 | | 57.5 | -4.93 | 2.26 | | 130 | 217 | 0.400 | 0.08 | 0.0 | 1.03 | 0.325 | -0.02 | 30.0 | 3.27 | 0.000 | 0.00 | 0.0 | -3.73 | 2.24 | | 131 | 218 | 0.400 | 0.08 | 0.0 | 0.69 | 0.325 | -0.02 | 30.0 | 3.08 | 0.075 | -0.06 | 0.0 | -2.77 | 2.39 | | 132 | 219 | 0.425 | 0.10 | 0.0 | 0.58 | 0.325 | -0.02 | 30.0 | 3.06 | 0.075 | -0.06 | 0.0 | -1.99 | 2.48 | | 133 | 220 | 0.425 | 0.10 | 0.0 | 0.33 | 0.325 | 0.00 | 25.0 | 2.93 | 0.100 | -0.06 | 0.0 | -1.59 | 2.60 | | 134 | 221 | 0.425 | 0.10 | 0.0 | 0.38 | 0.325 | 0.00 | 22.5 | 2.84 | 0.100 | -0.06 | 0.0 | -1.07 | 2.47 | | 135 | 222 | 0.425 | 0.10 | 0.0 | 0.58 | 0.300 | -0.02 | 20.0 | 2.50 | 0.125 | -0.08 | 0.0 | -0.93 | 1.91 | | | 223 | 0.425 | 0.10 | 0.0 | 0.92 | 0.300 | -0.02 | 20.0 | 2.37 | 0.125 | -0.08 | 0.0 | -0.62 | 1.44 | | 137 | 224 | 0.375 | 0.06 | 0.0 | 1.08 | 0.325 | 0.00 | 15.0 | 2.08 | 0.125 | -0.08 | 0.0 | -0.63 | 1.00 | | | 225 | 0.375 | 0.06 | 0.0 | 1.42 | 0.325 | 0.02 | 12.5 | 2.17 | 0.150 | -0.08 | 0.0 | -0.43 | 0.75 | | | 226 | 0.375 | 0.06 | 0.0 | 1.48 | 0.325 | 0.02 | 10.0 | 1.99 | | -0.08 | 0.0 | -0.58 | 0.52 | | | 227 | 0.375 | 0.06 | 0.0 | 1.89 | 0.325 | 0.02 | 7.5 | 2.16 | | -0.08 | 0.0 | -0.31 | 0.27 | | | 238 | 0.425 | | 50.0 | 3.63 | 0.400 | 0.02 | 47.5 | 3.84 | 0.225 | 0.00 | 0.0 | -0.49 | 0.21 | | | 239 | 0.425 | | 50.0 | 3.82 | 0.400 | 0.02 | 47.5 | 4.05 | 0.225 | 0.00 | 0.0 | -0.28 | 0.23 | | | 240 | 0.425 | | 50.0 | 3.70 | 0.375 | 0.02 | 47.5 | 4.06 | 0.225 | 0.00 | 5.0 | -0.32 | 0.36 | | | 241 | 0.425 | | 50.0 | 3.82 | 0.375 | 0.02 | | 4.22 | 0.225 | 0.00 | | 0.04 | 0.40 | | | 247 | 0.325 | -0.02 | 0.0 | 2.27 | 0.275 | 0.00 | -2.5 | 2.49 | 0.200 | 0.04 | 15.0 | 0.05 | 0.22 | | | | 3 (Ra) | | | | | | | | | | | | | | 110 | 198 | 0.325 | 0.02 | 0.0 | 1.26 | 0.275 | 0.04 | 17.5 | 1.58 | 0.250 | 0.00 | 47.5 | 0.89 | 0.31 | ${\bf Table} \ ({\rm continued})$ | Nucleus | 3 | Min | imum | L | | Sad | ldle | | | Mini | mum | | S.H. | |-------------|--------------|--------------|----------|-------|--------------|--------------|----------|-------|--------------|--------------|----------|-------|---------------| | N A | ϵ_2 | ϵ_4 | γ | E | ϵ_2 | ϵ_4 | γ | E | ϵ_2 | ϵ_4 | γ | E | $E_{\rm sad}$ | | | | | | (MeV) | | | | (MeV) | | | | (MeV) | (MeV) | | | 88 (Ra) | | | | | | | | | | | | | | 111 199 | | | | 3.10 | 0.375 | | 52.5 | 3.45 | 0.325 | 0.02 | 5.0 | 1.44 | 0.35 | | | 0.425 | | | 3.10 | 0.375 | | 52.5 | 3.45 | 0.225 | | 45.0 | 0.64 | 0.35 | | | 0.325 | | 5.0 | 1.44 | 0.275 | | 15.0 | 1.91 | 0.225 | | 45.0 | 0.64 | 0.47 | | 112 200 | | | | 3.10 | 0.375 | | 52.5 | 3.55 | 0.350 | 0.02 | 0.0 | 1.67 | 0.45 | | | 0.425 | | | 3.10 | 0.375 | | 52.5 | 3.55 | 0.225 | | 47.5 | 0.49 | 0.45 | | | 0.350 | | 0.0 | 1.67 | 0.275 | | 15.0 | 2.42 | 0.225 | | 47.5 | 0.49 | 0.75 | | 113 20 | | | | 2.87 | 0.375 | | 55.0 | 3.48 | 0.350 | 0.02 | 0.0 | 1.67 | 0.61 | | | 0.425 | | | 2.87 | 0.375 | | 55.0 | 3.48 | 0.225 | | 45.0 | 0.15 | 0.61 | | | 0.350 | | 0.0 | 1.67 | 0.300 | | 20.0 | 2.69 | 0.225 | | 45.0 | 0.15 | 1.02 | | 114 203 | | | 0.0 | 1.60 | 0.300 | | 20.0 | 3.12 | 0.225 | | 47.5 | -0.04 | 1.51 | | $115 \ 203$ | | | 0.0 | 1.42 | 0.275 | | 20.0 | 3.27 | 0.200 | | 45.0 | -0.49 | 1.85 | | $116 \ 20$ | | | 0.0 | 1.22 | 0.300 | | 17.5 | 3.54 | 0.200 | | 50.0 | -0.84 | 2.31 | | 117 20 | | | 0.0 | 1.05 | 0.325 | | 22.5 | 3.63 | 0.200 | | 52.5 | -1.42 | 2.57 | | 118 200 | | | 0.0 | 0.96 | 0.325 | | 22.5 | 3.84 | 0.125 | | 60.0 | -1.99 | 2.87 | | 119 20' | | | 0.0 | 0.82 | 0.300 | | 22.5 | 3.87 | 0.125 | | 60.0 | -2.69 | 3.04 | | $120 \ 208$ | | | 0.0 | 1.03 | 0.300 | | 22.5 | 3.96 | 0.125 | | 60.0 | -3.24 | 2.93 | | $121 \ 209$ | | | 5.0 | 1.13 | 0.325 | | 20.0 | 3.95 | 0.100 | | 60.0 | -4.05 | 2.83 | | $122 \ 210$ | | | 5.0 | 1.35 | 0.325 | | 25.0 | 3.98 | 0.075 | | 60.0 | -4.53 | 2.63 | | 123 21 | | | 7.5 | 1.35 | 0.325 | | 20.0 | 3.93 | 0.075 | | 55.0 | -5.34 | 2.58 | | 124 213 | | | 7.5 | 1.57 | 0.325 | | 20.0 | 3.89 | 0.025 | | 55.0 | -5.95 | 2.32 | | $125 \ 213$ | | | | 1.51 | 0.350 | | 22.5 | 3.70 | 0.000 | 0.00 | 0.0 | -6.93 | 2.19 | | $126 \ 214$ | | | 2.5 | 1.63 | 0.350 | | 22.5 | 3.59 | 0.000 | 0.00 | 0.0 | -7.18 | 1.96 | | 127 21 | | | 2.5 | 1.45 | 0.325 | | 25.0 | 3.42 | 0.025 | 0.00 | | -6.12 | 1.97 | | 128 210 | | | 0.0 | 1.46 | 0.350 | | 27.5 | 3.28 | 0.000 | 0.00 | 0.0 | -5.20 | 1.83 | | 129 21 | | | 0.0 | 1.24 | 0.350 | | 30.0 | 3.09 | 0.025 | 0.00 | | -3.90 | 1.85 | | 130 218 | | | 0.0 | 1.18 | 0.350 | | 30.0 | 3.13 | 0.000 | 0.00 | 0.0 | -2.73 | 1.95 | | 131 219 | | | 0.0 | 0.80 | 0.350 | | 30.0 | 2.95 | | -0.04 | 0.0 | -1.89 | 2.15 | | 132 220 | | | 0.0 | 0.71 | 0.325 | -0.02 | | 2.95 | | -0.06 | 0.0 | -1.24 | 2.24 | | 133 22 | | | 0.0 | 0.45 | 0.350 | 0.00 | | 2.73 | | -0.06 | 0.0 | -0.95 | 2.28 | | 134 225 | | | 0.0 | 0.50 | 0.300 | | | 2.66 | | -0.08 | 0.0 | -0.48 | 2.16 | | 135 223 | | | 0.0 | 0.70 | | -0.02 | | 2.34 | | -0.08 | 0.0 | -0.57 | 1.64 | | 136 224 | | | 0.0 | 1.05 | | -0.02 | | 2.23 | | -0.08 | 0.0 | -0.34 | 1.19 | | 137 22 | | | 0.0 | 1.14 | 0.325 | 0.02 | | 1.92 | | -0.08 | 0.0 | -0.57 | 0.78 | | 138 220 | | | 0.0 | 1.49 | 0.325 | | 10.0 | 2.02 | | -0.08 | 0.0 | -0.38 | 0.52 | | 139 22' | | | | 1.54 | 0.325 | | 12.5 | 1.91 | | -0.08 | 0.0 | -0.54 | 0.36 | | 152 240 | | | | 4.09 | 0.375 | | 47.5 | 4.31 | 0.225 | 0.00 | 0.0 | -0.39 | 0.22 | | 153 24 | | 0.02 | 50.0 | 3.97 | 0.400 | 0.02 | 50.0 | 4.31 | 0.225 | 0.00 | 0.0 | -0.44 | 0.35 | | | 89 (Ac) | | | | | | | | | | | | | | 110 199 | | | | 1.06 | 0.275 | | 12.5 | 1.28 | 0.250 | | 45.0 | 0.94 | 0.22 | | 111 200 | | | | 1.19 | 0.275 | | 15.0 | 1.57 | 0.250 | | 47.5 | 0.72 | 0.38 | | 112 20 | | | | 1.47 | 0.275 | | 15.0 | 2.06 | 0.225 | | 42.5 | 0.63 | 0.59 | | 113 203 | | | | 1.46 | 0.275 | | 22.5 | 2.34 | 0.225 | | 42.5 | 0.27 | 0.88 | | 114 203 | | | | 1.50 | 0.275 | | 22.5 | 2.72 | 0.225 | | 42.5 | 0.10 | 1.22 | | $115 \ 20$ | | | 0.0 | 1.32 | 0.275 | | 20.0 | 2.89 | 0.225 | | 45.0 | -0.24 | 1.57 | | $116 \ 20$ | | | 0.0 | 1.12 | 0.275 | | 20.0 | 3.15 | 0.200 | | 45.0 | -0.53 | 2.04 | | 117 200 | | | 0.0 | 0.94 | 0.300 | | 25.0 | 3.23 | 0.200 | | 52.5 | -1.10 | 2.29 | | 118 20' | | | 0.0 | 0.84 | 0.325 | | 22.5 | 3.41 | 0.200 | | 60.0 | -1.58 | 2.57 | | 119 208 | | | 0.0 | 0.82 | 0.325 | | 25.0 | 3.47 | 0.150 | | 60.0 | -2.18 | 2.65 | | 120 209 | | | 5.0 | 1.00 | 0.325 | | 25.0 | 3.56 | 0.125 | | 60.0 | -2.72 | 2.56 | | 121 210 | 0.400 | 0.04 | 10.0 | 1.03 | 0.325 | 0.00 | 25.0 | 3.52 | 0.100 | 0.00 | 60.0 | -3.41 | 2.49 | ${\bf Table} \ ({\rm continued})$ | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$ | Nucleus | Minimum | Saddle | | Minimum | S.H. |
--|-------------|-----------------------------|------------------------------------|-------|--------------------------|------| | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$ | | | ϵ_2 ϵ_4 γ | E | | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | (MeV) | | (MeV) | | | | 123 124 0.400 0.04 10.0 | | | | | | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | $0.400 \ 0.04 \ 7.5 \ 1.21$ | 0.325 0.00 20.0 | | 0.075 0.00 60.0 -3.78 | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | | | | | | | | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $ | $125 \ 214$ | | | | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | | | | | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $126 \ 215$ | | | | | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | | | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | | 136 225 0.425 0.12 0.0 0.78 0.325 0.00 17.5 1.83 0.150 -0.08 0.0 -0.61 1.05 137 226 0.375 0.06 0.0 0.90 0.300 0.00 15.0 1.55 0.150 -0.08 0.0 -0.65 0.45 138 227 0.375 0.06 0.0 1.24 0.325 0.02 15.0 1.69 0.150 -0.08 0.0 -0.65 0.45 139 228 0.375 0.06 0.0 1.32 0.325 0.02 12.5 1.56 0.175 -0.08 0.0 -0.68 0.25 | | | | | | | | 137 226 | | | | | | | | 138 227 | | | | | | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | | The color of | | | | | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | 0.325 0.02 12.5 | 1.56 | 0.175 - 0.08 0.0 -0.88 | 0.25 | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | | | | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | | | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | | | | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | | | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | | | | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | | | | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | | | | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | | | | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | | | | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | | | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | | $\begin{array}{c} 0.250\ 0.02\ 60.0\ -0.82 \\ 0.400\ 0.06\ 10.0\ 1.55 \\ 0.350\ 0.02\ 22.5 \\ 0.0250\ 0.02\ 60.0\ -0.43 \\ 0.400\ 0.06\ 10.0\ 1.55 \\ 0.350\ 0.02\ 22.5 \\ 0.0250\ 0.02\ 60.0\ -0.43 \\ 0.250\ 0.02\ 60.0\ -0.43 \\ 0.250\ 0.02\ 60.0\ -0.43 \\ 0.250\ 0.02\ 60.0\ -0.43 \\ 0.200\ 0.02\ 60.0\ 0.04 \\ 0.000\ 0.04 \\ 0.000\ 0.00\ 0.0\ 0.0\ -5.42 \\ 0.47 \\ 0.250\ 0.02\ 60.0\ -0.43 \\ 0.200\ 0.02\ 60.0\ 0.04 \\ 0.000\ 0.04 \\ 0.000\ 0.00\ 0.0\ 0.0\ -5.42 \\ 0.47 \\ 0.250\ 0.00\ 0.06\ 10.0\ 1.43 \\ 0.325\ 0.00\ 25.0\ 2.77 \\ 0.025\ 0.00\ 55.0\ -4.38 \\ 1.34 \\ 128\ 218 \\ 0.400\ 0.08\ 0.0\ 1.43 \\ 0.350\ 0.00\ 30.0\ 2.67 \\ 0.000\ 0.00\ 0.00\ 0.0\ -3.46 \\ 1.23 \\ 129\ 219 \\ 0.400\ 0.08\ 0.0\ 1.12 \\ 0.325\ 0.00\ 32.5 \\ 2.55 \\ 0.025\ 0.00\ 57.5 \\ -2.20 \\ 1.43 \\ 130\ 220 \\ 0.400\ 0.08\ 0.0\ 1.05 \\ 0.325\ 0.00\ 32.5 \\ 2.55 \\ 0.000\ 0.00\ 0.00\ 0.0 \\ 0.00\ -0.06 \\ 0.0\ -0.83 \\ 1.67 \\ 132\ 222 \\ 0.425\ 0.10\ 0.0\ 0.68 \\ 0.325\ 0.00\ 27.5 \\ 2.36 \\ 0.100\ -0.06\ 0.0\ -0.31 \\ 1.69 \\ \end{array}$ | 120 210 | | | | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 126 216 | | | | | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 120 210 | | | | | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | | | | | | 128 218 0.400 0.08 0.0 1.43 0.350 0.00 30.0 2.67 0.000 0.00 0.0 0.0 -3.46 1.23 129 219 0.400 0.08 0.0 1.12 0.325 0.00 32.5 2.55 0.025 0.00 57.5 -2.20 1.43 130 220 0.400 0.08 0.0 1.05 0.325 0.00 32.5 2.55 0.000 0.00 0.0 0.0 -1.03 1.50 131 221 0.400 0.08 0.0 0.71 0.325 -0.02 32.5 2.38 0.100 -0.06 0.0 -0.83 1.67 132 222 0.425 0.10 0.0 0.68 0.325 0.00 27.5 2.36 0.100 -0.06 0.0 -0.31 1.69 | 127 217 | | | | | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | | | | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | | | | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | | | | | | $132\ 222 \qquad 0.425\ 0.10\ 0.0 0.68 \qquad 0.325 0.00\ 27.5 2.36 \qquad 0.100\ -0.06 0.0\ -0.31 \qquad 1.69$ | ${\bf Table} \ ({\rm continued})$ | Nucleus | | Mini | mum | | | Sac | ldle | | | Mini | mum | | S.H. | |-------------------------|---------------|--------------|--------------|----------------|---------------|---------------|-------------|----------------|--------------|-----------------|--------------|------------------|----------------| | \overline{N} A | ϵ_2 | ϵ_4 | γ | E | ϵ_2 | ϵ_4 | γ | E | ϵ_2 | ϵ_4 | γ | E | $E_{\rm sad}$ | | | | | , | (MeV) | | | , | (MeV) | | | , | (MeV) | (MeV) | | Z = 90 | (Th) | | | | | | | | | | | | <u> </u> | | 134 224 | 0.425 | 0.12 | 0.0 | 0.39 | 0.300 | -0.02 | 25.0 | 2.10 | 0.150 | -0.08 | 0.0 | -0.22 | 1.70 | | $135 \ 225$ | 0.425 | 0.12 | 0.0 | 0.47 | 0.275 | -0.02 | 17.5 | 1.75 | 0.150 | -0.08 | 0.0 | -0.58 | 1.28 | | $136 \ 226$ | 0.425 | 0.12 | 0.0 | 0.84 | 0.300 | 0.00 | 17.5 | 1.68 | 0.150 | -0.10 | 0.0 | -0.55 | 0.85 | | 137 227 | 0.400 | 0.10 | 0.0 | 1.01 | 0.325 | 0.02 | 12.5 | 1.41 | 0.150 | -0.10 | 0.0 | -0.79 | 0.40 | | $138 \ 228$ | 0.375 | 0.06 | 0.0 | 1.33 | 0.350 | 0.04 | 12.5 | 1.58 | 0.175 | -0.08 | 0.0 | -0.73 | 0.25 | | Z=91 | (Pa) | | | | | | | | | | | | | | $112 \ 203$ | 0.325 | 0.02 | 15.0 | 0.97 | 0.275 | 0.00 | 17.5 | 1.37 | 0.225 | 0.02 | 30.0 | 0.82 | 0.40 | | $113 \ 204$ | 0.350 | 0.02 | 17.5 | 1.11 | 0.275 | 0.00 | 17.5 | 1.64 | 0.225 | 0.02 | 35.0 | 0.53 | 0.53 | | $114 \ 205$ | 0.375 | 0.04 | 15.0 | 1.26 | 0.275 | | 22.5 | 2.03 | 0.225 | | 37.5 | 0.43 | 0.77 | | $115 \ 206$ | 0.375 | | 15.0 | 1.14 | 0.300 | | 20.0 | 2.14 | 0.225 | | 40.0 | 0.07 | 1.01 | | 116 207 | 0.375 | | 12.5 | 1.12 | 0.275 | | 20.0 | 2.45 | 0.225 | 0.04 | 42.5 | -0.02 | 1.32 | | 117 208 | 0.375 | | 10.0 | 0.99 | 0.300 | | 25.0 | 2.52 | 0.200 | | 47.5 | -0.41 | 1.53 | | 118 209 | 0.375 | 0.02 | 7.5 | 0.96 | 0.325 | | 22.5 | 2.70 | 0.200 | | 60.0 | -0.77 | 1.74 | | $119 \ 210$ | 0.400 | | 12.5 | 0.88 | 0.325 | | 20.0 | 2.73 | 0.150 | | 60.0 | -1.32 | 1.84 | | $120 \ 211$ | 0.400 | 0.04 | 10.0 | 0.95 | 0.325 | | 20.0 | 2.87 | 0.125 | | 60.0 | -1.72 | 1.92 | | $121 \ 212$ | 0.400 | 0.04 | 10.0 | 0.90 | 0.325 | | 25.0 | 2.84 | 0.125 | | 60.0 | -2.25 | 1.94 | | $122 \ 213$ | 0.400 | | 10.0 | 1.09 | 0.350 | | 22.5 | 2.87 | 0.100 | | 60.0 | -2.55 | 1.77 | | $123 \ 214$ | 0.400 | | 12.5 | 1.04 | 0.350 | | 22.5 | 2.80 | 0.075 | | 55.0 | -3.22 | 1.76 | | $124 \ 215$ | 0.400 | | 10.0 | 1.25 | 0.350 | | 22.5 | 2.76 | 0.250 | | 60.0 | -0.56 | 1.51 | | | 0.400 | | 10.0 | 1.25 | 0.350 | | 22.5 | 2.76 | 0.075 | | 60.0 | -3.61 | 1.51 | | | 0.250 | | 60.0 | -0.56 | 0.200 | |
60.0 | -0.33 | 0.075 | | 60.0 | -3.61 | 0.23 | | $125 \ 216$ | 0.400 | | 12.5 | 1.12 | 0.350 | | 22.5 | 2.59 | 0.250 | | 60.0 | -0.67 | 1.47 | | | 0.400 | | 12.5 | 1.12 | 0.350 | | 22.5 | 2.59 | 0.000 | 0.00 | 0.0 | -4.39 | 1.47 | | | 0.250 | | 60.0 | -0.67 | 0.200 | | 60.0 | -0.11 | 0.000 | 0.00 | 0.0 | -4.39 | 0.55 | | $126 \ 217$ | 0.400 | | 12.5 | 1.22 | 0.350 | | 22.5 | 2.48 | 0.250 | 0.02 | | -0.29 | 1.27 | | | 0.400 | | 12.5 | 1.22 | 0.350 | | 22.5 | 2.48 | 0.000 | 0.00 | 0.0 | -4.61 | 1.27 | | | 0.250 | | 60.0 | -0.29 | 0.200 | | 60.0 | 0.34 | 0.000 | 0.00 | 0.0 | -4.61 | 0.63 | | $127 \ 218$ | 0.400 | | 12.5 | 1.11 | 0.325 | | 27.5 | 2.30 | 0.250 | 0.02 | | 0.13 | 1.19 | | | 0.400 | | 12.5 | 1.11 | 0.325 | | 27.5 | 2.30 | 0.025 | | 57.5 | -3.58 | 1.19 | | 100 010 | 0.250 | | 60.0 | 0.13 | 0.200 | | 60.0 | 0.50 | 0.025 | | 57.5 | -3.58 | 0.38 | | $128 \ 219$ | 0.400 | 0.08 | 0.0 | 1.15 | 0.325 | | 32.5 | 2.26 | 0.250 | | 60.0 | 0.65 | 1.11 | | | 0.400 | 0.08 | 0.0 | 1.15 | 0.325 | | 32.5 | 2.26 | 0.000 | 0.00 | 0.0 | -2.67 | 1.11 | | 100 000 | 0.250 | | 60.0 | 0.65 | 0.200 | | 60.0 | 0.96 | 0.000 | 0.00 | | -2.67 | 0.31 | | 129 220 | 0.400 | | 0.0 | 0.86 | 0.325 | | | 2.14 | 0.025 | | | -1.42 | 1.28 | | 130 221 | | -0.02 | | 1.45 | | -0.02 | | 2.13 | 0.400 | 0.08 | 0.0 | 0.77 | 0.68 | | | | -0.02 | | 1.45 | | -0.02 | | 1.69 | | -0.06 | 0.0 | -0.61 | 0.24 | | 121 222 | 0.400 | 0.08 | | 0.77 | | -0.02 -0.02 | | 2.13 | | -0.06 | 0.0 | -0.61 | 1.36 | | $131 \ 222$ | | -0.02 | | $1.51 \\ 1.51$ | | | | 1.97 | 0.400 | $0.08 \\ -0.06$ | 0.0 | $0.45 \\ -0.50$ | 0.45 | | | 0.275 0.400 | -0.02 0.08 | | 0.45 | | -0.04 | | $1.74 \\ 1.97$ | | | 0.0 | | 0.22 | | 132 223 | 0.400 | 0.08 | $0.0 \\ 0.0$ | $0.45 \\ 0.39$ | 0.300 0.325 | -0.02 | | | | -0.06 -0.08 | 0.0 | $-0.50 \\ -0.20$ | 1.51 | | 132 223
133 224 | 0.400 | 0.10 | 0.0 | 0.39 | | -0.00 | 27.5 | $1.92 \\ 1.70$ | | -0.08 | $0.0 \\ 0.0$ | | 1.53 1.60 | | $133 \ 224$ $134 \ 225$ | 0.400 | 0.10 | 0.0 | 0.10 | | -0.02 -0.02 | | 1.60 | | -0.08 | 0.0 | | 1.49 | | $134 \ 225$ $135 \ 226$ | 0.400 | 0.10 | 0.0 | 0.11 0.19 | | -0.02 -0.02 | | 1.00 1.29 | | -0.08 -0.10 | 0.0 | | 1.10 | | $136 \ 227$ | 0.400 0.400 | 0.10 | 0.0 | 0.19 0.51 | 0.300 0.325 | | 15.0 | 1.18 | | -0.10 -0.10 | 0.0 | | 0.67 | | $130 \ 227$ $137 \ 228$ | 0.400 0.375 | 0.10 | 0.0 | 0.60 | 0.325 0.350 | | 12.5 | 1.10 | | -0.10 -0.08 | | -0.30 -1.14 | $0.67 \\ 0.41$ | | 137 228 | 0.375 | 0.08 | 0.0 | 0.95 | 0.330 0.325 | | 12.5 12.5 | 1.00 1.22 | | -0.08 | 0.0 | | 0.41 0.27 | | 139 230 | 0.350 | 0.06 | 0.0 | 0.95 0.85 | 0.325 0.350 | | 7.5 | 1.17 | | -0.08 | | -1.12 -1.42 | 0.27 0.32 | | 140 231 | 0.350 | 0.06 | 0.0 | 1.21 | 0.350 | | 12.5 | 1.42 | | -0.08 | | -1.32 | 0.32 0.21 | | Z=92 | | 0.00 | 0.0 | 1.21 | 0.000 | 0.00 | 12.0 | 1.12 | 0.110 | 0.00 | 0.0 | 1.02 | 0.21 | | $2 - 92$ $111 \ 203$ | | -0.02 | 0.0 | 1.88 | 0.400 | 0.00 | 0.0 | 2.20 | 0.300 | 0.02 | 15.0 | 0.48 | 0.31 | | 111 400 | 0.420 | 0.02 | 0.0 | 1.00 | 0.400 | 0.00 | 0.0 | 4.40 | 0.300 | 0.02 | 10.0 | 0.40 | 0.31 | ${\bf Table} \ ({\rm continued})$ | Nucleus | | Minin | num | | | Sad | ldle | | | Minii | mum | | S.H. | |---------------|--------------|--------------|----------|-------|--------------|--------------|----------|-------|--------------|--------------|----------|-------|---------------| | N A | ϵ_2 | ϵ_4 | γ | E | ϵ_2 | ϵ_4 | γ | E | ϵ_2 | ϵ_4 | γ | E | $E_{\rm sad}$ | | | | | | (MeV) | | | | (MeV) | | | | (MeV) | (MeV) | | Z = 92 | ` ' | | | | | | | | | | | | | | $112 \ 204$ | 0.250 | 0.04 | | 0.85 | 0.275 | | 17.5 | 1.10 | 0.325 | 0.02 | | 0.84 | 0.25 | | $113 \ 205$ | 0.350 | 0.04 | | 1.01 | 0.275 | 0.02 | | 1.40 | 0.225 | 0.02 | | 0.60 | 0.39 | | 114 206 | 0.375 | 0.04 | | 1.26 | 0.275 | | 22.5 | 1.79 | 0.225 | 0.04 | | 0.56 | 0.53 | | $115 \ 207$ | 0.375 | 0.04 | | 1.14 | 0.300 | | 20.0 | 1.92 | 0.225 | 0.04 | | 0.23 | 0.78 | | 116 208 | 0.375 | 0.04 | | 1.15 | 0.300 | 0.00 | | 2.24 | 0.225 | 0.04 | | 0.19 | 1.09 | | 117 209 | 0.375 | 0.04 | | 1.03 | 0.325 | 0.00 | | 2.27 | 0.150 | 0.00 | | -0.06 | 1.24 | | $118 \ 210$ | 0.400 | 0.04 | | 1.04 | 0.300 | 0.00 | | 2.47 | 0.125 | 0.02 | 0.0 | -0.22 | 1.43 | | | 0.400 | 0.04 | | 1.04 | 0.300 | 0.00 | | 2.47 | 0.200 | 0.04 | | -0.38 | 1.43 | | | 0.125 | 0.02 | 0.0 | -0.22 | 0.150 | 0.00 | | 0.03 | 0.200 | 0.04 | | -0.38 | 0.25 | | $119 \ 211$ | 0.400 | 0.02 | 5.0 | 0.93 | 0.325 | 0.00 | | 2.53 | 0.175 | 0.02 | | -0.93 | 1.59 | | $120 \ 212$ | 0.400 | 0.04 | | 0.99 | 0.350 | 0.02 | | 2.64 | 0.150 | 0.02 | | -1.35 | 1.65 | | $121 \ 213$ | 0.400 | 0.04 | | 0.92 | 0.325 | 0.00 | | 2.67 | 0.125 | 0.00 | | -1.81 | 1.75 | | $122 \ 214$ | 0.400 | 0.04 | | 1.12 | 0.325 | 0.00 | | 2.71 | 0.100 | 0.02 | | -2.07 | 1.60 | | $123 \ \ 215$ | 0.400 | 0.04 | | 1.07 | 0.325 | 0.00 | | 2.62 | 0.075 | | 52.5 | -2.70 | 1.55 | | $124 \ 216$ | 0.400 | 0.06 | | 1.23 | 0.350 | 0.02 | | 2.56 | 0.250 | 0.04 | | -0.19 | 1.33 | | | 0.400 | 0.06 | | 1.23 | 0.350 | | 20.0 | 2.56 | 0.075 | 0.02 | | -3.08 | 1.33 | | | 0.250 | 0.04 | | -0.19 | 0.200 | | 60.0 | 0.10 | 0.075 | 0.02 | | -3.08 | 0.29 | | $125 \ 217$ | 0.400 | 0.06 | | 1.11 | 0.350 | | 20.0 | 2.44 | 0.250 | 0.02 | | -0.30 | 1.33 | | | 0.400 | 0.06 | | 1.11 | 0.350 | 0.02 | | 2.44 | 0.000 | 0.00 | 0.0 | -3.81 | 1.33 | | | 0.250 | 0.02 | | -0.30 | 0.200 | 0.02 | | 0.32 | 0.000 | 0.00 | 0.0 | -3.81 | 0.61 | | $126 \ 218$ | 0.400 | 0.06 | | 1.21 | 0.375 | 0.04 | | 2.35 | 0.250 | 0.02 | | 0.08 | 1.13 | | | 0.400 | 0.06 | | 1.21 | 0.375 | 0.04 | | 2.35 | 0.000 | 0.00 | 0.0 | -4.03 | 1.13 | | | 0.250 | 0.02 | | 0.08 | 0.200 | | 60.0 | 0.77 | 0.000 | 0.00 | 0.0 | -4.03 | 0.69 | | 127 219 | 0.400 | 0.06 | | 1.10 | 0.375 | | 22.5 | 2.13 | 0.250 | 0.02 | | 0.49 | 1.03 | | | 0.400 | 0.06 | | 1.10 | 0.375 | 0.04 | | 2.13 | 0.025 | 0.00 | | -2.99 | 1.03 | | | 0.250 | 0.02 | | 0.49 | 0.200 | 0.02 | | 0.94 | 0.025 | 0.00 | | -2.99 | 0.45 | | $128 \ 220$ | 0.400 | 0.08 | 0.0 | 1.23 | 0.325 | | 30.0 | 2.05 | 0.275 | 0.02 | | 1.01 | 0.82 | | | 0.400 | 0.08 | 0.0 | 1.23 | 0.325 | | 30.0 | 2.05 | 0.000 | 0.00 | 0.0 | -2.10 | 0.82 | | | 0.275 | 0.02 | | 1.01 | 0.200 | | 60.0 | 1.40 | 0.000 | 0.00 | 0.0 | -2.10 | 0.39 | | $129 \ 221$ | 0.275 | 0.00 | | 1.30 | 0.325 | | 30.0 | 1.94 | 0.400 | 0.08 | 0.0 | 0.93 | 0.64 | | | 0.275 | 0.00 | | 1.30 | 0.225 | | 50.0 | 1.59 | 0.025 | 0.00 | | -0.84 | 0.29 | | 100 000 | 0.400 | 0.08 | 0.0 | 0.93 | 0.325 | 0.00 | | 1.94 | 0.025 | 0.00 | | -0.84 | 1.02 | | $130 \ 222$ | | -0.02 | | 1.58 | 0.325 | | 30.0 | 1.93 | 0.400 | 0.08 | 0.0 | 0.86 | 0.35 | | | 0.275 | | | 1.58 | | -0.04 | | 1.94 | | -0.06 | | -0.13 | 0.37 | | 101 000 | 0.400 | | 0.0 | 0.86 | | -0.04 | | 1.94 | | -0.06 | 0.0 | -0.13 | 1.09 | | $131 \ 223$ | 0.350 | 0.02 | | 1.31 | 0.375 | 0.04 | | 1.54 | 0.400 | 0.08 | 0.0 | 0.53 | 0.23 | | | 0.350 | 0.02 | | 1.31 | | -0.04 | | 1.94 | | -0.06 | 0.0 | -0.02 | 0.63 | | 100 001 | 0.400 | | 0.0 | 0.53 | | -0.04 | | 1.94 | | -0.06 | 0.0 | -0.02 | 1.41 | | $132 \ 224$ | 0.375 | 0.04 | | 1.34 | 0.375 | 0.06 | | 1.64 | 0.400 | 0.10 | 0.0 | 0.45 | 0.29 | | | 0.375 | 0.04 | | 1.34 | | -0.06 | | 1.90 | | -0.08 | 0.0 | 0.14 | 0.56 | | 100 005 | 0.400 | | 0.0 | 0.45 | | -0.06 | | 1.90 | | -0.08 | 0.0 | 0.14 | 1.46 | | $133 \ 225$ | 0.375 | 0.04 | | 1.17 | 0.350 | 0.04 | | 1.40 | 0.400 | 0.10 | 0.0 | 0.16 | 0.23 | | | 0.375 | 0.04 | | 1.17 | | -0.04 | | 1.60 | | -0.08 | 0.0 | -0.18 | 0.42 | | 104 222 | 0.400 | 0.10 | 0.0 | 0.16 | | -0.04 | | 1.60 | | -0.08 | 0.0 | -0.18 | 1.44 | | 134 226 | 0.400 | 0.10 | 0.0 | 0.18 | | -0.02 | | 1.39 | | -0.08 | 0.0 | -0.35 | 1.21 | | 135 227 | 0.400 | 0.10 | 0.0 | 0.26 | 0.300 | 0.00 | | 1.08 | | -0.10 | 0.0 | -0.70 | 0.83 | | 136 228 | 0.400 | 0.10 | 0.0 | 0.59 | 0.350 | 0.04 | | 1.11 | | -0.08 | 0.0 | -0.87 | 0.52 | | 137 229 | 0.375 | 0.08 | 0.0 | 0.59 | 0.325 | 0.02 | | 0.96 | | -0.08 | 0.0 | -1.24 | 0.37 | | 138 230 | 0.375 | 0.08 | 0.0 | 0.96 | 0.350 | | 10.0 | 1.17 | | -0.08 | 0.0 | -1.24 | 0.21 | | 139 231 | 0.350 | 0.06 | 0.0 | 0.84 | 0.325 | 0.04 | 10.0 | 1.16 | 0.175 | -0.08 | 0.0 | -1.55 | 0.32 | ${\bf Table} \ ({\rm continued})$ | Nucleus | | Minii | mum | | | Sad | ldle | | | Mini | mum | | S.H. | |-------------|------------------|----------------|----------|----------------|------------------|--------------|--------------|----------------|------------------|--------------|--------------|-----------------|----------------| | N A | ϵ_2 | ϵ_4 | γ | E | ϵ_2 | ϵ_4 | γ | E | ϵ_2 | ϵ_4 | γ | E | $E_{\rm sad}$ | | | | | | (MeV) | | | | (MeV) | | | | (MeV) | (MeV) | | Z=93 | ` - / | | | | | | | | | | | | | | $113 \ 206$ | 0.350 | 0.04 | | 0.54 | 0.275 | | 17.5 | 0.90 | 0.250 | 0.04 | | 0.45 | 0.35 | | 114 207 | 0.350 | 0.04 | | 0.77 | 0.300 | 0.02 | | 1.22 | 0.250 | 0.04 | | 0.48 | 0.45 | | $115 \ 208$ | 0.375 | 0.04 | | 0.82 | 0.275 | | 22.5 | 1.43 | 0.225 | | 37.5 | 0.17 | 0.61 | | $116 \ 209$ | 0.375 | 0.04 | | 0.85 | 0.300 | | 20.0 | 1.67 | 0.225 | | 40.0 | 0.17 | 0.82 | | 117 210 | 0.375 | 0.04 | | 0.74 | 0.300 | | 25.0 | 1.74 | 0.150 | 0.00 | 7.5 | -0.07 | 1.00 | | 118 211 | 0.375 | 0.04 | | 0.81 | 0.325 | | 20.0 | 1.92 | 0.150 | 0.02 | 0.0 | -0.14 | 1.11 | | 119 212 | 0.400 | 0.04 | | 0.65 | 0.325 | | 22.5 | 2.05 | 0.125 | 0.02 | 0.0 | -0.54 | 1.39 | | | 0.400 | 0.04 | | 0.65 | 0.325 | | 22.5 | 2.05 | 0.175 | | 57.5 | -0.66 | 1.39 | | 100 010 | 0.125 | 0.02 | 0.0 | -0.54 | 0.125 | | 25.0 | -0.31 | 0.175 | | 57.5 | -0.66 | 0.23 | | 120 213 | 0.400 | 0.04 | | 0.73 | 0.325 | | 22.5 | 2.17 | 0.150 | | 60.0 | -1.07 | 1.44 | | 121 214 | 0.400 | 0.04 | | 0.65 | 0.325 | | 22.5 | 2.15 | 0.125 | | 57.5 | -1.46 | 1.50 | | 122 215 | 0.400 | 0.04 | | 0.84 | 0.325 | | 22.5 | 2.19 | 0.100 | | 60.0 | -1.65 | 1.35 | | 123 216 | 0.400 | 0.04 | | 0.80 | 0.350 | | 20.0 | 2.13 | 0.100 | | 57.5 |
-2.26 | 1.33 | | $124 \ 217$ | 0.400 | 0.06 | | 0.92 | 0.350 | | 20.0 | 2.14 | 0.250 | | 60.0 | -0.09 | 1.22 | | | 0.400 | 0.06 | | 0.92 | 0.350 | | 20.0 | 2.14 | 0.075 | | 60.0 | -2.54 | 1.22 | | 105 010 | 0.250 | 0.04 | | -0.09 | 0.200 | 0.02 | | 0.39 | 0.075 | | 60.0 | -2.54 | 0.48 | | $125 \ 218$ | 0.400 | 0.06 | | 0.80 | 0.350 | | 20.0 | 2.02 | 0.250 | | 60.0 | -0.18 | 1.22 | | | 0.400 | 0.06 | | 0.80 | 0.350 | 0.02 | | 2.02 | 0.025 | | 55.0 | -3.05 | 1.22 | | 196 910 | 0.250 | $0.02 \\ 0.06$ | | -0.18 | 0.200 | | 52.5 | 0.64 | 0.025 | | 55.0 | -3.05 | 0.82 | | 126 219 | 0.400 | | | 0.89 | 0.350 | | 22.5 | 1.92 | 0.250 | | 60.0 | 0.19 | 1.03 | | | 0.400 | 0.06 | | 0.89 | 0.350 | | 22.5 | 1.92 | 0.025 | | 60.0 | -3.15 | 1.03 | | 127 220 | $0.250 \\ 0.400$ | $0.02 \\ 0.06$ | | 0.19 | 0.200 | | 52.5
22.5 | 1.10 | $0.025 \\ 0.275$ | | 60.0
55.0 | -3.15 | 0.91 | | 121 220 | 0.400 0.400 | 0.06 | | $0.80 \\ 0.80$ | $0.350 \\ 0.350$ | 0.02 0.02 | | $1.73 \\ 1.73$ | 0.275 0.025 | 0.02 0.00 | | $0.54 \\ -2.27$ | $0.93 \\ 0.93$ | | | 0.400 0.275 | 0.00 | | 0.50 | 0.330 | 0.02 | | 1.18 | 0.025 | | 60.0 | -2.27 -2.27 | $0.95 \\ 0.65$ | | 128 221 | 0.275 | 0.02 | | 1.01 | 0.200 | | | 1.61 | 0.025 0.400 | | 12.5 | 0.96 | 0.60 | | 120 221 | 0.275 | 0.00 | | 1.01 | 0.200 | 0.02 | | 1.62 | 0.400 | | 55.0 | -1.29 | 0.61 | | | 0.213 0.400 | 0.06 | | 0.96 | 0.200 | 0.00 | | 1.62 | 0.025 | 0.00 | | -1.29 | 0.66 | | 129 222 | | -0.02 | | 1.17 | 0.300 | | | 1.49 | 0.400 | 0.08 | 0.0 | 0.70 | 0.32 | | 123 222 | | -0.02 | | 1.17 | 0.225 | | | 1.63 | 0.400 | -0.04 | 0.0 | -0.29 | 0.45 | | | 0.400 | 0.02 | 0.0 | 0.70 | 0.225 | | | 1.63 | 0.075 | -0.04 | 0.0 | -0.29 | 0.93 | | 130 223 | 0.350 | 0.02 | | 1.11 | 0.400 | 0.06 | | 1.33 | 0.400 | 0.01 | 0.0 | 0.62 | 0.22 | | 100 220 | 0.350 | 0.02 | | 1.11 | 0.275 | | | 1.77 | | -0.06 | 0.0 | 0.16 | 0.66 | | | 0.400 | 0.08 | 0.0 | 0.62 | | -0.02 | | 1.77 | | -0.06 | 0.0 | 0.16 | 1.16 | | $131 \ 224$ | 0.350 | 0.02 | | 0.87 | 0.400 | | 17.5 | 1.24 | 0.400 | 0.08 | 0.0 | 0.30 | 0.37 | | | 0.350 | 0.02 | | 0.87 | | -0.02 | | 1.54 | | -0.06 | 0.0 | 0.13 | 0.67 | | | 0.400 | 0.08 | | 0.30 | | -0.02 | | 1.54 | | -0.06 | 0.0 | 0.13 | 1.24 | | $132 \ 225$ | 0.375 | 0.04 | | 0.92 | 0.350 | | 17.5 | 1.22 | 0.400 | 0.10 | 0.0 | 0.16 | 0.29 | | | 0.375 | 0.04 | | 0.92 | | -0.02 | | 1.44 | | -0.08 | 0.0 | 0.05 | 0.51 | | | 0.400 | 0.10 | 0.0 | 0.16 | | -0.02 | | 1.44 | 0.150 | -0.08 | 0.0 | 0.05 | 1.28 | | $133 \ 226$ | 0.375 | 0.04 | | 0.76 | 0.350 | | 15.0 | 1.00 | 0.400 | 0.10 | 0.0 | -0.12 | 0.23 | | | 0.375 | 0.04 | 25.0 | 0.76 | 0.250 | -0.04 | 15.0 | 1.14 | 0.175 | -0.08 | 0.0 | -0.32 | 0.38 | | | 0.400 | 0.10 | 0.0 | -0.12 | 0.250 | -0.04 | 15.0 | 1.14 | 0.175 | -0.08 | 0.0 | -0.32 | 1.26 | | $134 \ 227$ | 0.400 | 0.10 | 0.0 | -0.10 | 0.350 | 0.04 | 12.5 | 0.94 | 0.175 | -0.08 | 0.0 | -0.58 | 1.04 | | $135 \ 228$ | 0.400 | 0.10 | 0.0 | -0.01 | 0.375 | 0.06 | 10.0 | 0.77 | 0.175 | -0.08 | 0.0 | -0.98 | 0.78 | | 136 229 | 0.400 | 0.10 | 0.0 | 0.31 | 0.350 | | 10.0 | 0.77 | 0.175 | -0.08 | 0.0 | -1.17 | 0.45 | | 137 230 | 0.375 | 0.08 | 0.0 | 0.29 | 0.350 | 0.04 | 10.0 | 0.59 | 0.175 | -0.08 | 0.0 | -1.53 | 0.29 | | $138 \ 231$ | 0.350 | 0.06 | 0.0 | 0.55 | 0.325 | 0.04 | 10.0 | 0.85 | 0.175 | -0.08 | 0.0 | -1.54 | 0.30 | | $139 \ 232$ | 0.350 | 0.06 | 0.0 | 0.50 | 0.325 | 0.04 | 7.5 | 0.75 | 0.175 | -0.08 | 0.0 | -1.86 | 0.25 | | Z=94 | (Pu) | | | | | | | | | | | | | | 115 209 | 0.350 | 0.04 | 15.0 | 0.77 | 0.300 | 0.02 | 22.5 | 1.14 | 0.175 | 0.00 | 15.0 | 0.19 | 0.37 | | | | | | | | | | | | | | | . \ | ${\bf Table} \ ({\rm continued})$ | Nucleus | | Minimum | | | Sac | ldle | | | Mini | mum | | S.H. | |--------------------|------------------|-----------------------------|-------------|------------------|---------------|----------|----------------|------------------|--------------|---------------|--------------|----------------| | \overline{N} A | ϵ_2 | ϵ_4 γ | E | ϵ_2 | ϵ_4 | γ | E | ϵ_2 | ϵ_4 | γ | E | $E_{\rm sad}$ | | | | | (MeV) | | | | (MeV) | | | | (MeV) | (MeV) | | Z = 94 (| ` ' | | | | | | | | | | | | | $116 \ 210$ | 0.375 | $0.04 \ 15.0$ | 0.90 | 0.300 | | 22.5 | 1.45 | 0.225 | | 37.5 | 0.25 | 0.55 | | 117 211 | 0.375 | $0.04 \ 12.5$ | 0.80 | 0.325 | | 20.0 | 1.50 | 0.150 | 0.02 | 7.5 | -0.12 | 0.70 | | $118 \ 212$ | 0.400 | $0.04 \ 10.0$ | 0.80 | 0.325 | | 20.0 | 1.76 | 0.150 | 0.02 | 0.0 | -0.19 | 0.96 | | $119 \ 213$ | 0.400 | $0.02 \ 10.0$ | 0.68 | 0.325 | | 17.5 | 1.90 | 0.175 | | 52.5 | -0.44 | 1.21 | | | 0.400 | $0.02 \ 10.0$ | 0.68 | 0.325 | | 17.5 | 1.90 | 0.125 | 0.02 | 0.0 | -0.48 | 1.21 | | | 0.175 | 0.02 52.5 | -0.44 | 0.150 | | 27.5 | -0.21 | 0.125 | 0.02 | 0.0 | -0.48 | 0.23 | | 120 214 | 0.400 | 0.04 10.0 | 0.74 | 0.325 | | 22.5 | 2.04 | 0.150 | | 60.0 | -0.83 | 1.30 | | 121 215 | 0.425 | 0.04 12.5 | 0.68 | 0.325 | | 22.5 | 2.02 | 0.125 | | 57.5 | -1.21 | 1.34 | | 122 216 | 0.425 | 0.04 12.5 | 0.87 | 0.350 | | 20.0 | 2.07 | 0.100 | | 60.0 | -1.36 | 1.20 | | 123 217 | 0.425 | 0.06 12.5 | 0.79 | 0.350 | | 20.0 | 2.05 | 0.100 | | 57.5 | -1.95 | 1.26 | | $124 \ 218$ | 0.425 | 0.06 12.5 | 0.92 | 0.350 | | 17.5 | 2.03 | 0.250 | | 60.0 | 0.16 | 1.11 | | | 0.425 | 0.06 12.5 | 0.92 | 0.350 | | 17.5 | 2.03 | 0.075 | | 60.0 | -2.22 | 1.11 | | 107 010 | 0.250 | 0.04 60.0 | 0.16 | 0.200 | | 60.0 | 0.63 | 0.075 | | 60.0 | -2.22 | 0.47 | | $125 \ \ 219$ | 0.425 | 0.06 15.0 | 0.79 | 0.350 | | 22.5 | 1.91 | 0.250 | | 60.0 | 0.07 | 1.12 | | | 0.425 | 0.06 15.0 | 0.79 | 0.350 | | 22.5 | 1.91 | 0.000 | 0.00 | 0.0 | -2.79 | 1.12 | | 100 000 | 0.250 | 0.02 60.0 | 0.07 | 0.200 | | 55.0 | 0.84 | 0.000 | 0.00 | 0.0 | -2.79 | 0.77 | | $126 \ 220$ | 0.400 | 0.06 12.5 | 0.93 | 0.350 | | 22.5 | 1.82 | 0.250 | | 60.0 | 0.44 | 0.89 | | | 0.400 | 0.06 12.5 | 0.93 | 0.350 | | 22.5 | 1.82 | 0.000 | 0.00 | 0.0 | -2.99 | 0.89 | | 107 001 | 0.250 | 0.02 60.0 | 0.44 | 0.200 | | 62.5 | 1.30 | 0.000 | 0.00 | 0.0 | -2.99 | 0.87 | | $127 \ 221$ | 0.400 | 0.06 12.5 | 0.83 | 0.375 | | 20.0 | 1.60 | 0.275 | | 55.0 | 0.74 | 0.77 | | | 0.400 | 0.06 12.5 | 0.83 | 0.375 | | 20.0 | 1.60 | 0.025 | | 60.0 | -1.97 | 0.77 | | 100 000 | 0.275 | 0.02 55.0 | 0.74 | 0.200 | | 47.5 | 1.44 | 0.025 | | 60.0 | -1.97 | 0.70 | | $128 \ 222$ | 0.325 | 0.00 25.0 | 1.32 | 0.300 | | | 1.53 | 0.275 | | 52.5 | 1.20 | 0.21 | | | $0.325 \\ 0.325$ | 0.00 25.0 | 1.32 | 0.375 | | 20.0 | 1.59 | 0.400 | | 10.0 | 0.99 | 0.27 | | | 0.325 0.275 | 0.00 25.0 $0.02 52.5$ | 1.32 1.20 | $0.225 \\ 0.375$ | | 20.0 | $1.79 \\ 1.59$ | $0.000 \\ 0.400$ | 0.00 | $0.0 \\ 10.0$ | -1.08 0.99 | $0.47 \\ 0.39$ | | | 0.275 0.275 | $0.02 \ 52.5$ $0.02 \ 52.5$ | 1.20 1.20 | | -0.04 | | 1.39 1.79 | 0.400 | 0.00 | 0.0 | -1.08 | $0.59 \\ 0.58$ | | | 0.275 0.400 | 0.02 32.3 | 0.99 | | -0.02 -0.02 | | 1.79 1.79 | 0.000 | 0.00 | 0.0 | -1.08 | 0.38 0.79 | | 129 223 | 0.400 0.350 | 0.03 10.0 | 1.04 | 0.225 0.375 | | 22.5 | 1.79 1.34 | 0.400 | | 10.0 | 0.83 | 0.79 | | 129 223 | 0.350 | $0.02 \ 25.0$ $0.02 \ 25.0$ | 1.04 | | -0.04 | | 1.34 1.77 | 0.400 0.075 | -0.04 | 0.0 | 0.06 | $0.30 \\ 0.72$ | | | 0.330 0.400 | 0.02 25.0 | 0.83 | | -0.04 -0.04 | | 1.77 | 0.075 | | 0.0 | 0.06 | $0.12 \\ 0.94$ | | 130 224 | 0.350 | $0.00 \ 10.0$ $0.02 \ 25.0$ | 0.99 | 0.229 0.400 | | 20.0 | 1.37 | 0.375 | 0.04 | 0.0 | 0.74 | 0.34 0.38 | | 100 224 | 0.350 | $0.02 \ 25.0$ $0.02 \ 25.0$ | 0.99 | | -0.02 | | 1.71 | | -0.06 | 0.0 | 0.51 | 0.72 | | | 0.375 | 0.08 0.0 | 0.74 | | -0.02 | | 1.71 | | -0.06 | 0.0 | 0.51 | 0.97 | | 131 225 | 0.350 | $0.02 \ 25.0$ | 0.75 | 0.400 | | 17.5 | 1.28 | 0.375 | 0.08 | 0.0 | 0.42 | 0.53 | | 101 220 | 0.350 | 0.02 25.0 | 0.75 | | -0.04 | | 1.51 | | -0.06 | 0.0 | 0.42 | 0.77 | | | 0.375 | 0.08 0.0 | 0.42 | | -0.04 | | 1.51 | | -0.06 | 0.0 | 0.42 | 1.09 | | 132 226 | 0.350 | 0.02 25.0 | 0.79 | 0.350 | | 15.0 | 1.26 | 0.400 | 0.10 | 0.0 | 0.32 | 0.46 | | 102 220 | 0.350 | 0.02 25.0 | 0.79 | | -0.02 | | 1.36 | | -0.08 | 0.0 | 0.35 | 0.56 | | | 0.400 | 0.10 0.0 | 0.32 | | -0.02 | | 1.36 | | -0.08 | 0.0 | 0.35 | 1.00 | | $133 \ 227$ | 0.375 | 0.04 25.0 | 0.70 | 0.375 | | 12.5 | 1.04 | 0.400 | 0.10 | 0.0 | 0.05 | 0.35 | | | 0.375 | 0.04 25.0 | 0.70 | | -0.04 | | 1.10 | | -0.08 | 0.0 | -0.09 | 0.40 | | | 0.400 | 0.10 0.0 | 0.05 | | -0.04 | | 1.10 | | -0.08 | 0.0 | -0.09 | 1.05 | | 134 228 | 0.325 | 0.02 17.5 | 0.70 | 0.375 | | 10.0 | 1.02 | 0.400 | 0.10 | 0.0 | 0.07 | 0.32 | | | 0.325 | 0.02 17.5 | 0.70 | | -0.04 | | 0.93 | | -0.08 | 0.0 | -0.34 | 0.23 | | | 0.400 | 0.10 0.0 | 0.07 | 0.375 | | 10.0 | 1.02 | | -0.08 | 0.0 | -0.34 | 0.95 | | $135 \ 229$ | 0.375 | 0.08 0.0 | 0.12 | 0.350 | | 10.0 | 0.71 | | -0.08 | 0.0 | -0.75 | 0.58 | | $136 \ 230$ | 0.375 | 0.08 0.0 | 0.38 | 0.350 | | | 0.78 | | -0.02 | | 0.17 | 0.40 | | | 0.375 | 0.08 0.0 | 0.38 | 0.350 | | | 0.78 | | -0.08 | 0.0 | -0.93 | 0.40 | | | 0.275 | -0.02 22.5 | 0.17 | 0.250 | -0.04 | 15.0 | 0.38 | 0.175 | -0.08 | 0.0 | -0.93 | 0.21 | | | | | | | | | | | | | | | ${\bf Table} \ ({\rm continued})$ | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $ | Nucleus | | Minimum | - | | Sad | ldle | | | Mini | mum | | S.H. |
---|---------------|--------------|-----------------------|-------|--------------|--------------|----------|-------|--------------|--------------|----------|-------|---------------| | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $ | N A | ϵ_2 | ϵ_4 γ | E | ϵ_2 | ϵ_4 | γ | E | ϵ_2 | ϵ_4 | γ | E | $E_{\rm sad}$ | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | (MeV) | | | | (MeV) | | | | (MeV) | (MeV) | | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $ | Z = 95 | (Am) | | | | | | | | | | | | | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $ | 117 212 | 0.375 | 0.04 15.0 | 0.52 | 0.325 | 0.02 | 20.0 | 0.96 | 0.150 | 0.02 | 5.0 | -0.28 | 0.44 | | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $ | $118 \ 213$ | 0.400 | 0.04 10.0 | 0.58 | 0.325 | 0.02 | 20.0 | 1.18 | 0.150 | 0.02 | 0.0 | -0.35 | 0.60 | | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $ | $119 \ 214$ | 0.400 | 0.02 10.0 | 0.43 | 0.325 | 0.02 | 20.0 | 1.33 | 0.150 | 0.02 | 0.0 | -0.53 | 0.89 | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $120 \ 215$ | 0.425 | 0.04 12.5 | 0.51 | 0.350 | 0.02 | 20.0 | 1.43 | 0.150 | 0.02 | 60.0 | -0.59 | 0.93 | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $121 \ 216$ | 0.425 | 0.04 12.5 | 0.39 | 0.350 | 0.02 | 20.0 | 1.50 | 0.125 | 0.02 | 52.5 | -0.90 | 1.11 | | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $ | $122 \ 217$ | 0.425 | 0.04 12.5 | 0.58 | 0.325 | 0.02 | 20.0 | 1.62 | 0.100 | 0.02 | 60.0 | -1.05 | 1.04 | | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $ | $123 \ 218$ | 0.425 | 0.06 15.0 | 0.50 | 0.325 | 0.02 | 20.0 | 1.59 | 0.250 | 0.04 | 60.0 | -0.03 | 1.09 | | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $ | | 0.425 | 0.06 15.0 | 0.50 | 0.325 | 0.02 | 20.0 | 1.59 | 0.100 | 0.02 | 52.5 | -1.65 | 1.09 | | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $ | | 0.250 | 0.04 60.0 | -0.03 | 0.200 | 0.02 | 62.5 | 0.26 | 0.100 | 0.02 | 52.5 | -1.65 | 0.29 | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $124 \ 219$ | 0.425 | 0.06 15.0 | 0.62 | 0.350 | 0.02 | 22.5 | 1.61 | 0.250 | 0.04 | 60.0 | 0.19 | 0.98 | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | 0.425 | 0.06 15.0 | 0.62 | 0.350 | 0.02 | 22.5 | 1.61 | 0.075 | 0.02 | 60.0 | -1.84 | 0.98 | | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $ | | 0.250 | 0.04 60.0 | 0.19 | 0.200 | 0.02 | 55.0 | 0.79 | 0.075 | 0.02 | 60.0 | -1.84 | 0.60 | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $125 \ 220$ | 0.425 | 0.06 15.0 | 0.51 | 0.350 | 0.02 | 22.5 | 1.46 | 0.250 | 0.02 | 57.5 | 0.13 | 0.95 | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | 0.425 | 0.06 15.0 | 0.51 | 0.350 | 0.02 | 22.5 | 1.46 | 0.025 | 0.00 | 60.0 | -2.25 | 0.95 | | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | | 0.250 | 0.02 57.5 | 0.13 | 0.200 | 0.02 | 52.5 | 0.98 | 0.025 | 0.00 | 60.0 | -2.25 | 0.85 | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $126 \ 221$ | 0.425 | 0.06 15.0 | 0.68 | 0.350 | 0.02 | 20.0 | 1.45 | 0.275 | 0.02 | 55.0 | 0.45 | 0.77 | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | 0.06 15.0 | 0.68 | 0.350 | 0.02 | 20.0 | 1.45 | 0.000 | | 0.0 | -2.36 | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | 0.275 | 0.02 55.0 | 0.45 | 0.200 | 0.00 | 45.0 | 1.42 | 0.000 | 0.00 | 0.0 | -2.36 | 0.97 | | $\begin{array}{c} 128\ 223 \\ 0.425 \\ 0.08\ 15.0 \\ 0.08\$ | $127 \ \ 222$ | 0.275 | 0.02 52.5 | 0.69 | 0.350 | 0.02 | 20.0 | 1.25 | 0.425 | 0.06 | 15.0 | 0.61 | 0.56 | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | 0.275 | 0.02 52.5 | 0.69 | 0.200 | -0.02 | 35.0 | 1.49 | 0.025 | 0.00 | 42.5 | -1.43 | 0.80 | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | 0.425 | 0.06 15.0 | 0.61 | 0.200 | -0.02 | 35.0 | 1.49 | 0.025 | 0.00 | 42.5 | -1.43 | 0.88 | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $128 \ 223$ | 0.425 | 0.08 15.0 | 0.84 | 0.375 | 0.04 | 17.5 | 1.23 | 0.325 | 0.00 | 25.0 | 0.82 | 0.39 | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | 0.425 | 0.08 15.0 | 0.84 | 0.275 | -0.02 | 10.0 | 1.56 | 0.025 | 0.00 | 32.5 | -0.49 | 0.72 | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | 0.325 | 0.00 25.0 | 0.82 | 0.275 | -0.02 | 10.0 | 1.56 | 0.025 | 0.00 | 32.5 | -0.49 | 0.74 | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $129 \ 224$ | 0.400 | 0.08 2.5 | | 0.375 | 0.04 | 22.5 | | 0.350 | 0.02 | 25.0 | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | 0.400 | 0.08 2.5 | | 0.275 | -0.02 | 10.0 | | 0.100 | -0.04 | 0.0 | | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | 0.02 25.0 | | 0.275 | -0.02 | 10.0 | | 0.100 | -0.04 | 0.0 | | 0.77 | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $130 \ 225$ | | | | | | | | | | 25.0 | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | | 0.0 | | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | | 0.0 | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $131 \ 226$ | | | | | | | | | | | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | 15.0 | | | | | | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | 0.275 | -0.02 | 7.5 | | | 0.02 | 25.0 | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $132 \ 227$ | | | | | | | | | | 0.0 | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | | | | | | $\begin{array}{c
ccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | | | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $133 \ 228$ | | | | | | | | | | | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | | | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | | | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $134 \ 229$ | | | | | | | | | | | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | | | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | | | | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $135 \ 230$ | | | | | | | | | | | | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | | | | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | | | | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | | | | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | | | | | | <u>148 243 </u> | (continues on next page) | 148 243 | 0.275 | 0.02 20.0 | -1.89 | 0.250 | 0.00 | 12.5 | -1.65 | 0.225 | | | | | ${\bf Table} \ ({\rm continued})$ | Nucleus | | Minir | num | | | Sac | ldle | | | Mini | mum | | S.H. | |-------------|--------------|--------------|----------|-------|--------------|--------------|----------|-------|--------------|--------------|----------|-------|---------------| | N A | ϵ_2 | ϵ_4 | γ | E | ϵ_2 | ϵ_4 | γ | E | ϵ_2 | ϵ_4 | γ | E | $E_{\rm sad}$ | | | | | | (MeV) | | | | (MeV) | | | | (MeV) | (MeV) | | Z = 96 | | | | | | | | | | | | | | | $119 \ 215$ | 0.425 | 0.04 | | 0.33 | 0.325 | 0.02 | 20.0 | 1.16 | 0.150 | 0.02 | 0.0 | -0.68 | 0.83 | | $120 \ 216$ | 0.425 | 0.04 | | 0.37 | 0.325 | 0.02 | 20.0 | 1.32 | 0.125 | 0.02 | 0.0 | -0.44 | 0.95 | | | 0.425 | 0.04 | | 0.37 | 0.325 | 0.02 | 20.0 | 1.32 | 0.150 | | 60.0 | -0.48 | 0.95 | | | 0.125 | 0.02 | 0.0 | -0.44 | 0.125 | 0.02 | 30.0 | -0.20 | 0.150 | | 60.0 | -0.48 | 0.24 | | $121 \ 217$ | 0.425 | 0.04 | | 0.26 | 0.325 | 0.02 | 20.0 | 1.38 | 0.125 | | 52.5 | -0.81 | 1.12 | | $122 \ 218$ | 0.425 | 0.04 | | 0.44 | 0.350 | 0.02 | 17.5 | 1.42 | 0.100 | | 60.0 | -0.95 | 0.98 | | $123 \ 219$ | 0.425 | 0.04 | | 0.40 | 0.350 | 0.02 | 17.5 | 1.44 | 0.250 | | 60.0 | 0.14 | 1.04 | | | 0.425 | 0.04 | | 0.40 | 0.350 | 0.02 | 17.5 | 1.44 | 0.100 | | 52.5 | -1.54 | 1.04 | | | 0.250 | 0.04 | | 0.14 | 0.200 | 0.02 | 60.0 | 0.40 | 0.100 | | 52.5 | -1.54 | 0.26 | | $124 \ 220$ | 0.425 | 0.04 | | 0.66 | 0.350 | 0.02 | 22.5 | 1.54 | 0.250 | | 60.0 | 0.35 | 0.88 | | | 0.425 | 0.04 | | 0.66 | 0.350 | 0.02 | 22.5 | 1.54 | 0.075 | | 60.0 | -1.72 | 0.88 | | | 0.250 | 0.04 | | 0.35 | 0.200 | 0.02 | 55.0 | 0.92 | 0.075 | | 60.0 | -1.72 | 0.57 | | $125 \ 221$ | 0.425 | 0.06 | | 0.54 | 0.350 | 0.02 | 20.0 | 1.42 | 0.250 | | 57.5 | 0.29 | 0.88 | | | 0.425 | 0.06 | | 0.54 | 0.350 | 0.02 | 20.0 | 1.42 | 0.000 | 0.00 | 0.0 | -2.16 | 0.88 | | | 0.250 | 0.02 | | 0.29 | 0.200 | 0.02 | 50.0 | 1.11 | 0.000 | 0.00 | 0.0 | -2.16 | 0.82 | | $126 \ 222$ | 0.425 | 0.06 | | 0.71 | 0.375 | 0.04 | 17.5 | 1.33 | 0.275 | | 55.0 | 0.57 | 0.62 | | | 0.425 | 0.06 | | 0.71 | 0.200 | 0.00 | 42.5 | 1.52 | 0.000 | 0.00 | 0.0 | -2.34 | 0.81 | | | 0.275 | 0.02 | | 0.57 | 0.200 | 0.00 | 42.5 | 1.52 | 0.000 | 0.00 | 0.0 | -2.34 | 0.95 | | $127 \ 223$ | 0.275 | 0.02 | | 0.81 | 0.300 | 0.00 | 35.0 | 1.07 | 0.325 | | 27.5 | 0.81 | 0.26 | | | 0.275 | 0.02 | | 0.81 | 0.375 | 0.04 | 17.5 | 1.23 | 0.425 | | 15.0 | 0.66 | 0.42 | | | 0.275 | 0.02 | | 0.81 | 0.225 | 0.00 | 37.5 | 1.57 | 0.025 | | 57.5 | -1.30 | 0.76 | | | 0.325 | 0.02 | | 0.81 | 0.375 | 0.04 | 17.5 | 1.23 | 0.425 | | 15.0 | 0.66 | 0.42 | | | 0.325 | 0.02 | | 0.81 | 0.225 | 0.00 | 37.5 | 1.57 | 0.025 | | 57.5 | -1.30 | 0.76 | | | 0.425 | 0.06 | | 0.66 | 0.225 | 0.00 | 37.5 | 1.57 | 0.025 | | 57.5 | -1.30 | 0.91 | | $128 \ 224$ | 0.425 | 0.06 | | 0.92 | 0.375 | 0.04 | 20.0 | 1.28 | 0.325 | 0.00 | | 0.75 | 0.36 | | | 0.425 | 0.06 | | 0.92 | | -0.02 | 10.0 | 1.49 | 0.000 | 0.00 | 0.0 | -0.43 | 0.57 | | | 0.325 | 0.00 | | 0.75 | | -0.02 | 10.0 | 1.49 | 0.000 | 0.00 | 0.0 | -0.43 | 0.74 | | $129 \ 225$ | 0.350 | 0.02 | | 0.53 | | -0.02 | 10.0 | 1.30 | 0.100 | | 0.0 | 0.54 | 0.76 | | $130 \ 226$ | 0.400 | 0.08 | 0.0 | 0.91 | | -0.02 | 10.0 | 1.23 | 0.125 | | 0.0 | 0.86 | 0.32 | | | 0.400 | 0.08 | 0.0 | 0.91 | 0.375 | 0.06 | 12.5 | 1.21 | 0.350 | | | 0.46 | 0.31 | | | | -0.06 | 0.0 | 0.86 | 0.275 | | 10.0 | 1.23 | 0.350 | | 25.0 | 0.46 | 0.38 | | $131 \ 227$ | 0.400 | 0.08 | 0.0 | 0.61 | 0.350 | 0.04 | 12.5 | 1.03 | 0.200 | | 0.0 | 0.54 | 0.43 | | | 0.400 | 0.08 | 0.0 | 0.61 | 0.350 | | 12.5 | 1.03 | 0.350 | 0.02 | | 0.23 | 0.43 | | | 0.200 - | | 0.0 | 0.54 | | -0.02 | 7.5 | 0.98 | 0.350 | | | 0.23 | 0.44 | | $132 \ 228$ | 0.400 | 0.10 | 0.0 | 0.51 | 0.350 | | 10.0 | 1.04 | 0.350 | | | 0.27 | 0.54 | | | 0.400 | 0.10 | 0.0 | 0.51 | 0.350 | 0.04 | 10.0 | 1.04 | | -0.06 | 0.0 | 0.34 | 0.54 | | | 0.350 | 0.02 | | 0.27 | 0.275 | | 15.0 | 0.93 | | -0.06 | 0.0 | 0.34 | 0.59 | | $133 \ 229$ | 0.400 | 0.10 | 0.0 | 0.24 | 0.375 | 0.06 | 7.5 | 0.86 | 0.325 | | | 0.08 | 0.62 | | | 0.400 | 0.10 | 0.0 | 0.24 | 0.375 | 0.06 | 7.5 | 0.86 | | -0.06 | 0.0 | 0.02 | 0.62 | | | 0.325 | 0.02 | | 0.08 | 0.250 | | 15.0 | 0.69 | | -0.06 | 0.0 | 0.02 | 0.61 | | $134 \ 230$ | 0.400 | 0.10 | 0.0 | 0.27 | 0.350 | 0.06 | 10.0 | 0.78 | 0.325 | | | 0.06 | 0.51 | | | 0.400 | 0.10 | 0.0 | 0.27 | 0.350 | 0.06 | 10.0 | 0.78 | | -0.06 | 0.0 | -0.19 | 0.51 | | | 0.325 | 0.02 | | 0.06 | 0.250 | | 15.0 | 0.53 | | -0.06 | 0.0 | -0.19 | 0.47 | | $135 \ 231$ | 0.375 | 0.08 | 0.0 | 0.30 | 0.350 | | -2.5 | 0.52 | 0.300 | | | -0.20 | 0.22 | | | 0.375 | 0.08 | 0.0 | 0.30 | 0.350 | | -2.5 | 0.52 | | -0.06 | 0.0 | -0.54 | 0.22 | | | 0.300 | | 20.0 | -0.20 | | | 17.5 | 0.22 | | -0.06 | 0.0 | -0.54 | 0.43 | | 136 232 | 0.300 | | 22.5 | -0.36 | | | 17.5 | 0.04 | | -0.06 | 0.0 | -0.71 | 0.39 | | 137 233 | 0.300 | 0.00 | | -0.63 | | | | -0.42 | | -0.06 | 0.0 | -1.09 | 0.21 | | 138 234 | 0.300 | 0.00 | | -0.83 | | | 17.5 | -0.53 | | -0.06 | 0.0 | -1.23 | 0.30 | | 139 235 | 0.300 | 0.00 | 22.5 | -1.16 | 0.250 | -0.02 | 17.5 | -0.90 | 0.200 | -0.06 | 0.0 | -1.65 | 0.26 | Table (continued) | Nucleus | | Minii | mum | | | Sad | ldle | | | Mini | mum | | S.H. | |-------------------------|------------------|--------------|---------------------|---------------|---------------|---------------|----------------|----------------|---------------|---------------|--------------|------------------|----------------| | N A | ϵ_2 | ϵ_4 | γ | E | ϵ_2 | ϵ_4 | γ | E | ϵ_2 | ϵ_4 | γ | E | $E_{\rm sad}$ | | | | | | (MeV) | | | | (MeV) | | | | (MeV) | (MeV) | | Z = 96 | | | | | | | | | | | | | | | $145 \ 241$ | 0.275 | 0.00 | | -1.75 | 0.275 | | 15.0 | -1.46 | | -0.04 | 0.0 | -2.47 | 0.29 | | $146 \ 242$ | 0.275 | 0.02 | | -1.67 | 0.250 | | 15.0 | -1.40 | | -0.04 | 0.0 | -2.33 | 0.28 | | 147 243 | 0.275 | | 20.0 | -2.03 | 0.250 | | 12.5 | -1.75 | | -0.02 | 0.0 | -2.60 | 0.28 | | $148 \ 244$ | 0.275 | 0.02 | 20.0 | -2.04 | 0.250 | 0.00 | 12.5 | -1.78 | 0.225 | -0.02 | 0.0 | -2.58 | 0.26 | | Z=97 | ` ' | | | | | | | | | | | | | | $121 \ 218$ | 0.300 | 0.02 | | 0.23 | 0.275 | | 40.0 | 0.54 | 0.125 | | 47.5 | -0.74 | 0.31 | | $122 \ 219$ | 0.300 | 0.02 | | 0.31 | 0.275 | | 40.0 | 0.66 | 0.125 | | 47.5 | -0.84 | 0.35 | | $123 \ 220$ | 0.250 | 0.04 | | 0.12 | 0.200 | 0.02 | | 0.46 | 0.100 | | 50.0 | -1.37 | 0.34 | | $124 \ 221$ | 0.300 | 0.02 | | 0.46 | 0.300 | | 37.5 | 0.68 | 0.250 | | 57.5 | 0.32 | 0.22 | | | 0.300 | 0.02 | | 0.46 | 0.200 | | 47.5 | 0.96 | 0.075 | | 60.0 | -1.49 | 0.50 | | | 0.250 | 0.04 | | 0.32 | 0.200 | 0.02 | | 0.96 | 0.075 | | 60.0 | -1.49 | 0.64 | | $125 \ \ 222$ | 0.275 | 0.04 | | 0.28 | 0.200 | 0.00 | | 1.11 | 0.025 | | 57.5 | -1.79 | 0.83 | | $126 \ 223$ | 0.275 | 0.02 | | 0.48 | 0.300 | 0.00 | | 0.81 | 0.325 | | 27.5 | 0.48 | 0.32 | | | 0.275 | 0.02 | | 0.48 | 0.275 | 0.00 | | 1.21 | 0.000 | 0.00 | 0.0 | -1.94 | 0.73 | | | 0.325 | 0.02 | | 0.48 | 0.275 | 0.00 | | 1.21 | 0.000 | 0.00 | 0.0 | -1.94 | 0.73 | | $127 \ 224$ | 0.425 | 0.06 | | 0.61 | 0.375 | | 17.5 | 0.99 | 0.325 | | 27.5 | 0.37 | 0.38 | | | 0.425 | 0.06 | | 0.61 | 0.250 | | | 1.11 | 0.025 | | 60.0 | -0.94 | 0.50 | | | 0.325 | 0.02 | | 0.37 | 0.250 | | | 1.11 | 0.025 | 0.00 | | -0.94 | 0.74 | | 128 225 | 0.325 | 0.02 | | 0.31 | 0.300 | 0.00 | | 1.05 | 0.025 | | 12.5 | -0.04 | 0.74 | | 129 226 | | -0.04 | 0.0 | 0.52 | 0.275 | | | 0.87 | 0.350 | | 25.0 | 0.16 | 0.35 | | $130 \ 227$ | 0.400 | 0.08 | 0.0 | 0.90 | 0.375 | | 10.0 | 1.12 | 0.225 | -0.04 | 0.0 | 0.44 | 0.22 | | | 0.400 | 0.08 | 0.0 | 0.90 | 0.375 | 0.06 | | 1.12 | 0.350 | | 25.0 | 0.08 | 0.22 | | | | -0.04 | 0.0 | 0.44 | 0.275 | -0.02 | | 0.80 | 0.350 | | 25.0 | 0.08 | 0.36 | | $131 \ 228$ | 0.400 | 0.08 | 0.0 | 0.60 | 0.350 | 0.04 | | 0.88 | 0.225 | -0.04 | 0.0 | 0.23 | 0.28 | | | 0.400 | 0.08 | 0.0 | 0.60 | 0.350 | 0.04 | | 0.88 | 0.350 | | 25.0 | -0.14 | 0.28 | | 100 000 | | -0.04 | 0.0 | 0.23 | 0.275 | | 7.5 | 0.54 | 0.350 | | 25.0 | -0.14 | 0.31 | | $132 \ 229$ | 0.400 | 0.08 | 0.0 | 0.58 | 0.350 | 0.06 | | 0.84 | 0.200 | -0.06 | 0.0 | 0.14 | 0.27 | | | 0.400 | 0.08 | 0.0 | 0.58 | 0.350 | 0.06 | | 0.84 | 0.325 | | 22.5 | -0.12 | 0.27 | | 199 090 | | -0.06 | 0.0 | 0.14 | 0.300 | 0.00 | 7.5 | 0.51 | 0.325 | | 22.5 | -0.12 | 0.38 | | $133 \ 230$ | 0.400 | 0.10 | 0.0 | 0.37 | 0.350 | 0.06 | 7.5 | 0.59 | 0.200 | -0.06 | 0.0 | -0.18 | 0.23 | | | 0.400 | 0.10 | 0.0 | 0.37 | 0.350 | 0.06 | 7.5 | 0.59 | 0.325 | | 20.0 | -0.36 | 0.23 | | 104 001 | | -0.06 | 0.0 | -0.18 | 0.275 | -0.02 | | 0.23 | 0.325 | | 20.0 | -0.36 | 0.41 | | $134 \ 231$ | 0.400 | 0.10 | 0.0 | 0.38 | 0.375 | 0.08 | 5.0 | 0.60 | 0.200 | -0.06 | 0.0 | -0.39 | 0.21 | | | 0.400 | 0.10 |
0.0 | 0.38 | 0.375 | 0.08 | 5.0 | 0.60 | 0.325 | | 20.0 | -0.37 | 0.21 | | 125 020 | 0.200 | | 0.0 | -0.39 | | -0.02 | 7.5 | 0.10 | 0.325 | -0.02 | 20.0 | -0.37 | 0.47 | | 135 232
136 233 | $0.300 \\ 0.300$ | | 20.0 | -0.60 -0.75 | | -0.02 | | -0.22 | | -0.06 | 0.0 | -0.73 | $0.38 \\ 0.34$ | | 130 233 | 0.300 | | 22.5
20.0 | -0.73 -1.03 | | -0.02 -0.02 | | -0.41 -0.76 | | -0.06 | $0.0 \\ 0.0$ | $-0.90 \\ -1.27$ | 0.34 0.26 | | 137 234 | 0.300 | | 20.0 22.5 | -1.03 -1.22 | | -0.02 -0.02 | | -0.76 -0.98 | | -0.06 | 0.0 | -1.27 -1.42 | 0.20 0.25 | | 139 236 | 0.300 | | 22.5 | -1.22 -1.55 | | -0.02 -0.02 | | -0.98 -1.34 | | -0.06 | 0.0 | -1.42 -1.82 | 0.25 0.21 | | 143 240 | 0.300 | | 25.0 | -1.05 -2.05 | | -0.02 -0.02 | | -1.34 -1.82 | | -0.00 -0.04 | 0.0 | -1.52 -2.59 | 0.21 0.22 | | 143 240 | 0.300 | | 25.0 25.0 | -2.05 -1.95 | | -0.02 -0.02 | | -1.70 | | -0.04 -0.04 | 0.0 | -2.59 -2.54 | 0.22 0.25 | | 145 242 | 0.300 | | 25.0 25.0 | -1.95 -2.21 | 0.250 0.275 | | 15.0 15.0 | | | -0.04 -0.04 | | -2.80 | 0.23 0.34 | | 146 243 | 0.300 | | 23.0 22.5 | -2.21 -2.14 | 0.275 0.250 | | 13.0 12.5 | -1.87 -1.88 | | -0.04 -0.02 | $0.0 \\ 0.0$ | -2.69 | 0.34 0.26 | | $140 \ 243$ $147 \ 244$ | 0.300 | | $\frac{22.5}{22.5}$ | -2.14 -2.51 | 0.250 0.250 | | $12.5 \\ 12.5$ | -1.88 -2.22 | | -0.02 -0.02 | 0.0 | -2.09 -3.05 | 0.20 0.29 | | 147 244 148 245 | 0.300 0.275 | | | | 0.250 0.250 | | $12.5 \\ 12.5$ | -2.22 -2.25 | | -0.02 -0.02 | 0.0 | -3.03 -3.04 | 0.29 0.24 | | | | 0.02 | 20.0 | 2.00 | 0.200 | 0.00 | 12.0 | 2.20 | 0.440 | 0.02 | 0.0 | 9.04 | 0.24 | | Z = 98 123 221 | 0.250 | 0.04 | 60.0 | 0.20 | 0.200 | 0.02 | 52.5 | 0.49 | 0.100 | 0.02 | 47.5 | -1.41 | 0.29 | | $123 \ 221$ $124 \ 222$ | 0.250 0.250 | 0.04 0.04 | | 0.20 0.40 | 0.200 0.275 | | 40.0 | $0.49 \\ 0.68$ | 0.100 | | 30.0 | -1.41 0.44 | 0.29 0.23 | | 144 444 | 0.250 0.250 | | 60.0 | 0.40 0.40 | 0.273 | | 45.0 | 0.08 0.98 | 0.300 0.075 | | | -1.57 | 0.23 0.58 | | | 0.200 | 0.04 | 00.0 | 0.40 | 0.200 | 0.02 | 40.0 | 0.30 | 0.010 | | | -1.57 | _ | ${\bf Table} \ ({\rm continued})$ | Nucleus | Minimum | Saddle | Minimum | S.H. | | |---------------|--|---|---|---------------|--| | N A | ϵ_2 ϵ_4 γ E | $\epsilon_2 \qquad \epsilon_4 \qquad \gamma \qquad E$ | $\epsilon_2 \qquad \epsilon_4 \qquad \gamma \qquad E$ | $E_{\rm sad}$ | | | | (MeV) | (MeV) | (MeV) | (MeV) | | | Z=98 | ` ' | | | | | | $124 \ 222$ | 0.300 0.02 30.0 0.44 | 0.200 0.02 47.5 0.98 | 0.075 0.02 60.0 -1.57 | 0.53 | | | $125 \ \ 223$ | 0.275 0.04 55.0 0.33 | 0.200 0.00 40.0 1.08 | 0.025 0.00 57.5 -1.88 | 0.75 | | | $126 \ 224$ | 0.275 0.02 57.5 0.54 | 0.275 0.02 40.0 0.78 | 0.325 0.02 27.5 0.44 | 0.25 | | | | 0.275 0.02 57.5 0.54 | 0.275 0.00 15.0 1.19 | 0.000 0.00 0.0 -2.05 | 0.65 | | | | 0.325 0.02 27.5 0.44 | 0.275 0.00 15.0 1.19 | 0.000 0.00 0.0 -2.05 | 0.75 | | | $127 \ \ 225$ | $0.250 \ -0.02 \ 0.0 \ 0.65$ | 0.275 0.00 12.5 1.07 | 0.325 0.02 27.5 0.32 | 0.42 | | | | $0.250 \ -0.02 \ 0.0 \ 0.65$ | 0.175 -0.04 5.0 1.03 | $0.025 0.00 \ 60.0 \ -1.02$ | 0.38 | | | | 0.325 0.02 27.5 0.32 | 0.275 0.00 12.5 1.07 | $0.025 0.00 \ 60.0 \ -1.02$ | 0.75 | | | $128 \ \ 226$ | 0.425 0.06 15.0 0.90 | 0.400 0.04 17.5 1.13 | $0.250 \ -0.02 \ 0.0 \ 0.61$ | 0.24 | | | | 0.425 0.06 15.0 0.90 | 0.400 0.04 17.5 1.13 | 0.325 0.02 25.0 0.27 | 0.24 | | | | 0.425 0.06 15.0 0.90 | 0.400 0.04 17.5 1.13 | 0.000 0.00 0.0 -0.19 | 0.24 | | | | $0.250 \ -0.02 \ 0.0 \ 0.61$ | 0.275 0.00 12.5 1.01 | 0.325 0.02 25.0 0.27 | 0.40 | | | | $0.250 \ -0.02 \ 0.0 \ 0.61$ | $0.175 -0.04 \ 10.0 \ 1.04$ | 0.000 0.00 0.0 -0.19 | 0.43 | | | | 0.325 0.02 25.0 0.27 | 0.275 0.00 12.5 1.01 | 0.000 0.00 0.0 -0.19 | 0.74 | | | 129 227 | $0.250 \ -0.02 \ 0.0 \ 0.43$ | 0.300 0.00 12.5 0.82 | 0.325 0.02 25.0 0.12 | 0.39 | | | 130 228 | $0.250 \ -0.02 \ 0.0 \ 0.42$ | $0.275 0.00 \ 10.0 0.71$ | 0.350 0.02 25.0 0.13 | 0.30 | | | $131 \ 229$ | 0.400 0.08 0.0 0.87 | 0.375 0.06 7.5 1.10 | $0.250 \ -0.02 \ 0.0 \ 0.25$ | 0.23 | | | | 0.400 0.08 0.0 0.87 | 0.375 0.06 7.5 1.10 | $0.350 0.02 \ 25.0 \ -0.10$ | 0.23 | | | | $0.250 \ -0.02 \ 0.0 \ 0.25$ | 0.300 0.02 10.0 0.46 | 0.350 0.02 25.0 -0.10 | 0.21 | | | $132 \ 230$ | 0.400 0.08 0.0 0.85 | 0.350 0.06 7.5 1.05 | 0.325 0.02 22.5 -0.14 | 0.20 | | | $137 \ 235$ | $0.200 \ -0.06 \ 0.0 \ -0.98$ | $0.250 \ -0.02 \ 15.0 \ -0.77$ | 0.300 0.02 20.0 -0.97 | 0.20 | | | 142 240 | 0.300 0.02 25.0 -1.77 | $0.250 \ -0.02 \ 17.5 \ -1.55$ | 0.225 -0.04 0.0 -2.12 | 0.22 | | | 143 241 | 0.300 0.02 25.0 -2.03 | 0.275 0.00 17.5 -1.76 | 0.225 -0.04 0.0 -2.45 | 0.28 | | | 144 242 | 0.300 0.02 25.0 -1.93 | $0.250 \ -0.02 \ 15.0 \ -1.66$ | 0.225 -0.04 0.0 -2.40 | 0.27 | | | 145 243 | 0.300 0.04 22.5 -2.19 | 0.250 0.00 15.0 -1.90 | 0.225 -0.02 0.0 -2.68 | 0.29 | | | 146 244 | 0.300 0.04 22.5 -2.21 | $0.250 0.00 \ 12.5 -1.94$ | 0.225 -0.02 0.0 -2.70 | 0.26 | | | 147 245 | 0.300 0.04 22.5 -2.58 | 0.250 0.00 12.5 -2.28 | 0.225 -0.02 0.0 -3.05 | 0.30 | | | 148 246 | 0.300 0.04 22.5 -2.54 | 0.250 0.00 12.5 -2.30 | 0.225 -0.02 0.0 -3.04 | 0.24 | | | $159 \ 257$ | 0.425 0.00 17.5 1.83 | 0.375 0.00 17.5 2.07 | 0.225 0.04 0.0 -2.72 | 0.24 | | | Z=99 | ` ' | | | | | | $125 \ \ 224$ | 0.325 0.02 30.0 0.17 | $0.275 0.00 \ 20.0 0.83$ | $0.025 0.00 \ 60.0 \ -1.73$ | 0.66 | | | $126 \ 225$ | 0.250 0.00 0.0 0.47 | 0.275 0.00 17.5 0.81 | 0.325 0.02 30.0 0.20 | 0.34 | | | | 0.250 0.00 0.0 0.47 | $0.175 -0.02 \ 12.5 \ 0.71$ | 0.000 0.00 0.0 -1.88 | 0.24 | | | | 0.325 0.02 30.0 0.20 | 0.275 0.00 17.5 0.81 | 0.000 0.00 0.0 -1.88 | 0.61 | | | 127 226 | $0.250 \ -0.02 \ 0.0 \ 0.25$ | 0.275 0.00 17.5 0.73 | 0.325 0.02 30.0 0.11 | 0.49 | | | | 0.250 -0.02 0.0 0.25 | $0.200 -0.02 \ 12.5 \ 0.67$ | 0.025 0.00 60.0 -0.86 | 0.42 | | | | 0.325 0.02 30.0 0.11 | 0.275 0.00 17.5 0.73 | 0.025 0.00 60.0 -0.86 | 0.62 | | | $128 \ 227$ | 0.250 -0.02 0.0 0.20 | 0.300 0.00 17.5 0.70 | 0.325 0.02 27.5 0.10 | 0.50 | | | | 0.250 -0.02 0.0 0.20 | 0.150 -0.04 10.0 0.88 | 0.000 0.00 0.0 -0.02 | 0.68 | | | | 0.325 0.02 27.5 0.10 | $0.150 \ -0.04 \ 10.0 \ 0.88$ | 0.000 0.00 0.0 -0.02 | 0.79 | | | 129 228 | 0.325 0.02 27.5 -0.00 | 0.300 0.00 17.5 0.54 | $0.250 \ -0.02 \ 0.0 \ 0.03$ | 0.51 | | | 130 229 | 0.325 0.02 27.5 -0.04 | 0.300 0.00 17.5 0.47 | $0.250 \ -0.02 \ 0.0 \ 0.01$ | 0.45 | | | 131 230 | 0.250 -0.02 0.0 -0.15 | 0.325 0.02 17.5 0.18 | 0.350 0.02 27.5 -0.15 | 0.33 | | | 132 231 | $0.250 \ -0.02 \ 0.0 \ -0.15$ | 0.300 0.02 15.0 0.07 | 0.325 0.02 25.0 -0.20 | 0.21 | | | 147 246 | 0.300 0.04 22.5 -2.80 | 0.275 0.02 15.0 -2.60 | 0.225 -0.02 0.0 -3.39 | 0.21 | | | Z = 100 | • , | | | | | | $126 \ 226$ | 0.275 0.02 60.0 0.37 | $0.225 -0.02 \ 30.0 \ 1.02$ | 0.250 0.00 0.0 0.39 | 0.63 | | | | 0.275 0.02 60.0 0.37 | $0.225 -0.02 \ 30.0 \ 1.02$ | 0.000 0.00 0.0 -2.19 | 0.65 | | | | 0.250 0.00 0.0 0.39 | $0.200 \ -0.02 \ 10.0 \ 0.73$ | 0.000 0.00 0.0 -2.19 | 0.34 | | | 127 227 | 0.325 0.02 30.0 0.31 | 0.300 0.00 20.0 0.95 | 0.250 0.00 0.0 0.25 | 0.63 | | Table (continued) | Nucleus | 3 | Mini | mum | | | Sad | ldle | | | Minimum | | | | | |-------------|--------------|--------------|-------------|-------------|--------------|--------------|----------|-------------|--------------|--------------|----------|-------|---------------|--| | N A | ϵ_2 | ϵ_4 | γ | E | ϵ_2 | ϵ_4 | γ | E | ϵ_2 | ϵ_4 | γ | E | $E_{\rm sad}$ | | | | | | | (MeV) | | | | (MeV) | | | | (MeV) | (MeV) | | | Z = | ` , | | | | | | | | | | | | | | | $127 \ 227$ | | 0.02 | 30.0 | 0.31 | 0.300 | | 20.0 | 0.95 | 0.025 | | 55.0 | -1.13 | 0.63 | | | | 0.250 | 0.00 | 0.0 | 0.25 | 0.200 | -0.02 | | 0.71 | 0.025 | 0.00 | 55.0 | -1.13 | 0.46 | | | $128 \ 228$ | 0.325 | 0.02 | 30.0 | 0.33 | 0.300 | | 20.0 | 0.88 | 0.250 | -0.02 | 0.0 | 0.28 | 0.55 | | | | 0.325 | 0.02 | 30.0 | 0.33 | 0.300 | 0.02 | 20.0 | 0.88 | 0.000 | 0.00 | 0.0 | -0.33 | 0.55 | | | | 0.250 | -0.02 | 0.0 | 0.28 | 0.150 | -0.02 | 15.0 | 0.93 | 0.000 | 0.00 | 0.0 | -0.33 | 0.65 | | | 129 229 | 0.100 | -0.02 | 0.0 | 0.68 | 0.150 | -0.04 | 10.0 | 0.96 | 0.350 | 0.02 | 27.5 | 0.25 | 0.28 | | | | 0.100 | -0.02 | 0.0 | 0.68 | 0.150 | -0.04 | 10.0 | 0.96 | 0.275 | 0.00 | 0.0 | 0.12 | 0.28 | | | | 0.350 | 0.02 | 27.5 | 0.25 | 0.300 | 0.00 | 15.0 | 0.80 | 0.275 | 0.00 | 0.0 | 0.12 | 0.56 | | | 130 230 | 0.350 | 0.02 | 27.5 | 0.20 | 0.300 | 0.00 | 15.0 | 0.73 | 0.275 | 0.00 | 0.0 | 0.07 | 0.52 | | | $131 \ 231$ | 0.350 | 0.02 | 25.0 | -0.03 | 0.300 | 0.02 | 15.0 | 0.42 | 0.275 | 0.00 | 0.0 | -0.18 | 0.44 | | | $132 \ 232$ | 0.350 | 0.02 | 25.0 | 0.02 | 0.300 | 0.02 | 15.0 | 0.28 | 0.275 | 0.00 | 0.0 | -0.19 | 0.26 | | | Z = | 101 (Md) | | | | | | | | | | | | | | | 128 229 | | 0.02 | 35.0 | 0.24 | 0.250 | 0.00 | 32.5 | 0.85 | 0.250 | 0.00 | 0.0 | 0.09 | 0.60 | | | | 0.325 | | 35.0 | 0.24 | 0.250 | | 32.5 | 0.85 | 0.000 | 0.00 | 0.0 | -0.40 | 0.60 | | | | 0.250 | 0.00 | 0.0 | 0.09 | 0.150 | -0.02 | | 0.64 | 0.000 | 0.00 | 0.0 | -0.40 | 0.55 | | | 129 230 | | 0.04 | 32.5 | 0.17 | 0.275 | | 30.0 | 0.72 | 0.275 | 0.00 | 0.0 | -0.03 | 0.55 | | | 130 231 | | | 30.0 | 0.11 | 0.300 | | 20.0 | 0.70 | 0.250 | 0.00 | 0.0 | -0.02 | 0.59 | | | 131 232 | | 0.02 | | -0.08 | 0.325 | | 17.5 | 0.45 | 0.275 | 0.00 | 0.0 | -0.33 | 0.53 | | | 132 233 | | | 25.0 | -0.04 | 0.325 | | 17.5 | 0.34 | 0.275 | 0.00 | 0.0 | -0.34 | 0.39 | | | 133 234 | | | 32.5 | -0.21 | 0.325 | | 17.5 | 0.07 | 0.275 | 0.00 | 0.0 | -0.57 | 0.28 | | | 134 235 | | | 32.5 | -0.27 | 0.300 | | 22.5 | -0.03 | 0.275 | 0.02 | 0.0 | -0.58 | 0.24 | | | 158 259 | | | 17.5 | 1.11 | 0.350 | | 20.0 | 1.35 | 0.225 | 0.04 | 0.0 | -3.95 | 0.24 | | | 159 260 | | | 17.5 | 0.82 | 0.350 | | 17.5 | 1.41 | 0.225 | 0.04 | 0.0 | -4.19
| 0.59 | | | | 102 (No) | | | | | | | | | | | | | | | 130 232 | | 0.02 | 27.5 | 0.33 | 0.250 | 0.00 | 27.5 | 0.92 | 0.250 | 0.00 | 0.0 | 0.13 | 0.59 | | | 131 233 | | | 27.5 | 0.13 | 0.275 | | 30.0 | 0.82 | 0.275 | 0.00 | 0.0 | -0.15 | 0.69 | | | 132 234 | | | 27.5 | 0.17 | 0.325 | | 17.5 | 0.66 | 0.275 | 0.02 | 0.0 | -0.17 | 0.49 | | | 133 235 | | | 32.5 | 0.06 | 0.325 | | 17.5 | 0.38 | 0.275 | 0.02 | 0.0 | -0.42 | 0.32 | | | 134 236 | | | 35.0 | 0.02 | 0.300 | | 25.0 | 0.29 | 0.275 | 0.02 | 0.0 | -0.48 | 0.28 | | | 157 259 | | | 20.0 | 1.00 | 0.350 | | 20.0 | 1.33 | 0.225 | 0.04 | 0.0 | -4.30 | 0.33 | | | 158 260 | | | 17.5 | 0.94 | 0.350 | | 20.0 | 1.48 | 0.225 | 0.04 | 0.0 | -4.10 | 0.54 | | | 159 261 | | | 17.5 | 0.64 | 0.350 | | 20.0 | 1.54 | 0.200 | 0.04 | 0.0 | -4.35 | 0.89 | | | | 103 (Lr) | 0.00 | _, | 0.0 - | 0.000 | 0.00 | | | 0.200 | 0.0 - | 0.0 | | 0.00 | | | $132 \ 235$ | ` , | 0.02 | 27.5 | -0.06 | 0.275 | 0.02 | 32.5 | 0.56 | 0.275 | 0.02 | 0.0 | -0.41 | 0.63 | | | 133 236 | | | 27.5 | | 0.275 | | 30.0 | 0.40 | 0.275 | 0.02 | 0.0 | | 0.59 | | | 134 237 | | | 35.0 | | 0.275 | | 27.5 | 0.23 | 0.275 | 0.02 | 0.0 | | 0.36 | | | 135 238 | | | 35.0 | | 0.300 | | 27.5 | -0.02 | 0.275 | 0.02 | 0.0 | | 0.30 | | | 156 259 | | | | 0.32 | 0.350 | | 22.5 | 1.14 | 0.215 | 0.02 | 0.0 | | 0.30 0.28 | | | 157 260 | | | 20.0 | 0.55 | 0.350 | 0.00 | | 1.14 | 0.225 | 0.04 | 0.0 | | 0.23 0.64 | | | 157 260 | | | 17.5 | 0.35 0.49 | 0.350 | | 22.5 | 1.13 | 0.225 | 0.04 | 0.0 | | 0.88 | | | 159 262 | | | 17.5 17.5 | 0.49 0.20 | | -0.04 | | 1.30 1.21 | 0.220 | 0.04 | | -4.96 | 1.01 | | | | | 0.00 | 17.5 | 0.20 | 0.525 | -0.04 | 1.0 | 1.21 | 0.200 | 0.04 | 0.0 | -4.90 | 1.01 | | | | 104 (Rf) | 0.00 | 20.0 | 0.00 | 0.200 | 0.00 | 20.0 | 0.40 | 0.075 | 0.00 | 0.0 | 0.51 | 0.54 | | | 134 238 | | | 30.0 | -0.06 | 0.300 | | 30.0 | 0.48 | 0.275 | 0.02 | 0.0 | | 0.54 | | | 135 239 | | | 30.0 | | 0.275 | 0.02 | | 0.25 | 0.300 | 0.04 | 0.0 | | 0.44 | | | 136 240 | | | 35.0 | | 0.300 | | 30.0 | 0.09 | 0.275 | 0.02 | 0.0 | | 0.22 | | | 155 259 | | | 20.0 | 0.76 | 0.350 | | 22.5 | 1.12 | 0.225 | 0.04 | 0.0 | | 0.35 | | | 156 260 | | | | 0.72 | 0.325 | | 22.5 | 1.25 | 0.225 | 0.04 | 0.0 | -4.70 | 0.53 | | | 157 261 | | | 17.5 | 0.37 | 0.350 | | 22.5 | 1.31 | 0.225 | 0.04 | 0.0 | | 0.94 | | | 158 262 | 0.425 | 0.00 | 17.5 | 0.31 | 0.325 | -0.06 | 7.5 | 1.45 | 0.225 | 0.06 | 0.0 | -4.74 | 1.14 | | ${\bf Table} \ ({\rm continued})$ | Nucleus | | Minii | mum | | | Sad | dle | | | Minimum | | | | |-----------------------|---------------|--------------|---------------------|----------------|--------------|---------------|--------------------|----------------|---------------|--------------|----------|---------------|---------------| | N A | ϵ_2 | ϵ_4 | γ | \overline{E} | ϵ_2 | ϵ_4 | γ | \overline{E} | ϵ_2 | ϵ_4 | γ | E | $E_{\rm sad}$ | | | | | | (MeV) | | | | (MeV) | | | | (MeV) | (MeV) | | Z = 104 | (Rf) | | | | | | | | | | | | | | $159 \ 263$ | 0.425 | 0.00 | 17.5 | 0.01 | 0.325 | -0.06 | 7.5 | 1.12 | 0.225 | 0.06 | 0.0 | -5.13 | 1.11 | | $160 \ 264$ | 0.325 - | -0.06 | 0.0 | 0.75 | 0.275 | -0.02 | 0.0 | 1.25 | 0.200 | 0.06 | 0.0 | -5.20 | 0.50 | | Z=105 | (Db) | | | | | | | | | | | | | | 136 241 | 0.375 | 0.02 | 32.5 | -0.40 | 0.300 | 0.04 | 30.0 | 0.20 | 0.300 | 0.04 | 0.0 | -0.93 | 0.60 | | 137 242 | 0.375 | 0.02 | 32.5 | -0.59 | 0.300 | 0.04 | 30.0 | -0.07 | 0.300 | 0.04 | 0.0 | -1.08 | 0.52 | | $138 \ 243$ | 0.350 | 0.02 | 32.5 | -0.60 | 0.300 | 0.02 | 27.5 | -0.27 | 0.250 | 0.00 | 15.0 | -1.09 | 0.33 | | 139 244 | 0.350 | 0.02 | 35.0 | -0.81 | 0.325 | 0.02 | 30.0 | -0.61 | 0.250 | 0.00 | 15.0 | -1.42 | 0.20 | | $154 \ 259$ | 0.400 - | -0.02 | 20.0 | 0.61 | 0.350 | 0.04 | 27.5 | 0.95 | 0.225 | 0.04 | 0.0 | -5.33 | 0.34 | | $155 \ 260$ | 0.400 - | -0.02 | 20.0 | 0.37 | 0.350 | 0.00 | 22.5 | 0.94 | 0.225 | 0.04 | 0.0 | -5.46 | 0.57 | | $156 \ 261$ | 0.400 - | -0.02 | 17.5 | 0.26 | 0.325 | 0.02 | 25.0 | 1.14 | 0.225 | 0.04 | 0.0 | -5.23 | 0.88 | | $157 \ \ 262$ | 0.425 | 0.00 | 17.5 | -0.08 | 0.350 | 0.00 | 25.0 | 1.13 | 0.225 | 0.06 | 0.0 | -5.46 | 1.21 | | $158 \ 263$ | 0.425 | 0.00 | 17.5 | -0.15 | 0.325 | -0.06 | 7.5 | 1.15 | 0.225 | 0.06 | 0.0 | -5.40 | 1.31 | | $159 \ 264$ | 0.325 - | -0.06 | 0.0 | 0.63 | 0.350 | -0.04 | 7.5 | 0.83 | 0.425 | 0.00 | 17.5 | -0.44 | 0.21 | | | 0.325 - | -0.06 | 0.0 | 0.63 | 0.300 | -0.04 | 0.0 | 0.98 | 0.225 | 0.06 | 0.0 | -5.78 | 0.35 | | | 0.425 | 0.00 | 17.5 | -0.44 | 0.300 | -0.04 | 0.0 | 0.98 | 0.225 | 0.06 | 0.0 | -5.78 | 1.41 | | $160 \ 265$ | 0.325 - | -0.06 | 0.0 | 0.46 | 0.275 | -0.02 | 0.0 | 1.16 | 0.200 | 0.06 | 0.0 | -5.86 | 0.71 | | Z = 106 | (Sg) | | | | | | | | | | | | | | 138 244 | 0.375 | 0.02 | 32.5 | -0.62 | 0.300 | 0.02 | 27.5 | 0.01 | 0.250 | 0.02 | 12.5 | -0.90 | 0.63 | | 139 245 | 0.375 | 0.02 | | -0.77 | 0.325 | 0.02 | | -0.34 | 0.250 | | | -1.19 | 0.43 | | 140 246 | 0.375 | 0.02 | | -0.67 | 0.325 | 0.02 | | -0.41 | 0.250 | | | -1.32 | 0.26 | | 154 260 | | -0.02 | | 0.49 | 0.350 | 0.04 | | 1.08 | 0.225 | | 0.0 | -5.27 | 0.59 | | 155 261 | 0.400 - | | | 0.24 | 0.325 | 0.02 | | 1.05 | 0.225 | | 0.0 | -5.41 | 0.81 | | $156 \ 262$ | 0.400 - | | | 0.13 | 0.325 | 0.02 | | 1.28 | 0.225 | | 0.0 | -5.23 | 1.15 | | 157 263 | 0.425 | 0.00 | | -0.19 | | -0.06 | 7.5 | 1.33 | 0.225 | | 0.0 | -5.55 | 1.52 | | 158 264 | 0.425 | 0.00 | | -0.23 | | -0.04 | 7.5 | 1.19 | 0.225 | | 0.0 | -5.49 | 1.42 | | 159 265 | 0.425 | 0.00 | | -0.52 | | -0.02 | 0.0 | 1.07 | 0.225 | | 0.0 | -5.86 | 1.59 | | 160 266 | 0.425 | 0.00 | | -0.41 | | -0.02 | 0.0 | 1.39 | 0.200 | | 0.0 | -5.98 | 1.80 | | Z = 107 | | | | | | | | | | | | | | | $140 \ 247$ | 0.375 | 0.02 | 35.0 | -1.01 | 0.325 | 0.02 | 30.0 | -0.45 | 0.250 | 0.02 | 12.5 | -1.51 | 0.56 | | 141 248 | 0.375 | 0.02 | | -1.06 | 0.325 | 0.02 | | -0.69 | 0.250 | | | -1.80 | 0.37 | | 153 260 | 0.400 | 0.00 | | 0.14 | 0.350 | 0.04 | | 0.65 | 0.225 | | 0.0 | -5.71 | 0.50 | | 154 261 | 0.400 - | | | 0.09 | 0.350 | 0.00 | | 0.90 | 0.225 | | 0.0 | -5.65 | 0.82 | | 155 262 | 0.400 - | | | | | 0.04 | | 0.97 | | | | -5.84 | 1.12 | | 156 263 | 0.425 | | | -0.25 | 0.375 | 0.04 | | 1.16 | 0.225 | | | -5.76 | 1.41 | | 157 264 | 0.425 | | | -0.56 | | -0.04 | 7.5 | 1.06 | 0.225 | | | -6.07 | 1.62 | | 158 265 | 0.425 | | | -0.61 | | -0.02 | 0.0 | 1.02 | 0.225 | | | -6.01 | 1.63 | | 159 266 | 0.425 | | | -0.89 | | -0.02 | 0.0 | 0.98 | 0.225 | | | -6.38 | 1.87 | | 160 267 | 0.425 | | | -0.79 | | -0.02 | 0.0 | 1.21 | 0.225 | | | -6.51 | 2.00 | | Z=108 | | 0.00 | 11.0 | 00 | 0.000 | 0.02 | 0.0 | 11 | 0.220 | 0.00 | 0.0 | 0.01 | 2.00 | | $2 = 100$ $142 \ 250$ | 0.375 | 0.02 | 35.0 | -0.77 | 0.325 | 0.02 | 30 O | -0.52 | 0.250 | 0.04 | 12.5 | -1.59 | 0.25 | | 152 260 | 0.400 | 0.00 | | 0.18 | 0.350 | 0.02 | | 0.63 | 0.225 | | | -5.26 | 0.45 | | 153 261 | 0.400 0.400 | | 25.0 | -0.02 | 0.350 | 0.04 | | 0.03 | 0.225 0.225 | | | -5.20 -5.43 | 0.45 0.76 | | 154 262 | 0.400 | | 22.5 | -0.04 | 0.350 | 0.06 | | 1.03 | 0.225 | | 0.0 | -5.43 | 1.06 | | 155 263 | 0.400 0.400 | | $\frac{22.5}{22.5}$ | -0.04 -0.26 | 0.350 | 0.00 | | 1.03 | 0.225 0.225 | | 0.0 | -5.43 -5.68 | 1.29 | | 156 264 | 0.425 | | 20.0 | -0.20 -0.33 | 0.350 | 0.02 | | 1.05 1.25 | 0.225 0.225 | | 0.0 | -5.59 | 1.58 | | 157 265 | 0.425 | | 20.0 | -0.65 | | -0.02 | $\frac{25.0}{2.5}$ | 1.20 1.10 | 0.225 0.225 | | 0.0 | -5.90 | 1.75 | | 158 266 | 0.425 0.425 | | | -0.68 | | -0.00 -0.02 | 0.0 | 1.10 1.07 | 0.225 0.225 | | 0.0 | -5.84 | 1.75 1.75 | | 159 267 | 0.425 | | | -0.97 | | -0.02 | 0.0 | 1.07 | 0.225 | | 0.0 | -6.32 | 2.04 | | 160 268 | 0.425 0.425 | | | -0.86 | | -0.02 -0.02 | 0.0 | 1.07 1.25 | 0.225 0.225 | | | -6.32 -6.47 | 2.04 2.11 | | 100 200 | 0.440 | 0.00 | 11.0 | 0.00 | 0.000 | 0.02 | 0.0 | 1.20 | 0.220 | 0.00 | 0.0 | 0.41 | ۵.11 | ${\bf Table} \ ({\rm continued})$ | Nucleus | Minimum | | | | Sad | ldle | | | S.H. | | | | | |--------------------|--------------|--------------|----------|-------|--------------|--------------|----------|----------------|--------------|---------------------------------|----------|-------|---------------| | \overline{N} A | ϵ_2 | ϵ_4 | γ | E | ϵ_2 | ϵ_4 | γ | \overline{E} | ϵ_2 | $\frac{ ext{Mini}}{\epsilon_4}$ | γ | E | $E_{\rm sad}$ | | | | | , | (MeV) | | | , | (MeV) | | | , | (MeV) | (MeV) | | Z = 109 | (Mt) | | | | | | | | | | | | | | $152 \ 261$ | 0.400 | 0.00 | 27.5 | -0.30 | 0.350 | 0.06 | 27.5 | 0.39 | 0.225 | 0.04 | 0.0 | -5.31 | 0.69 | | $153 \ 262$ | 0.400 | 0.00 | 27.5 | -0.46 | 0.350 | 0.02 | 25.0 | 0.57 | 0.225 | 0.06 | 0.0 | -5.54 | 1.03 | | $154 \ 263$ | 0.400 | 0.00 | 25.0 | -0.47 | 0.350 | 0.02 | 25.0 | 0.81 | 0.225 | 0.06 | 0.0 | -5.58 | 1.28 | | $155 \ 264$ | 0.425 | 0.00 | 22.5 | -0.62 | 0.350 | 0.02 | 25.0 | 0.84 | 0.225 | 0.06 | 0.0 | -5.83 | 1.46 | | $156 \ 265$ | 0.425 | 0.00 | 22.5 | -0.75 | 0.325 | -0.04 | 0.0 | 1.12 | 0.225 | 0.06 | 0.0 | -5.74 | 1.87 | | 157 266 | 0.425 | 0.00 | 20.0 | -1.03 | 0.325 | -0.04 | 0.0 | 0.82 | 0.225 | 0.06 | 0.0 | -6.05 | 1.86 | | $158 \ 267$ | 0.425 | 0.00 | 20.0 | -1.03 | 0.300 | -0.02 | 0.0 | 0.85 | 0.200 | 0.06 | 0.0 | -6.17 | 1.88 | | $159 \ 268$ | 0.425 | 0.00 | 17.5 | -1.32 | 0.300 | -0.02 | 0.0 | 0.86 | 0.200 | 0.06 | 0.0 | -6.67 | 2.18 | | $160 \ 269$ | 0.425 | 0.00 | 17.5 | -1.22 | 0.300 | -0.02 | 0.0 | 1.03 | 0.200 | 0.08 | 0.0 | -6.89 | 2.25 | | Z = 110 | (Ds) | | | | | | | | | | | | | | $152 \ 262$ | 0.425 | 0.00 | 27.5 | -0.49 | 0.350 | 0.06 | 27.5 | 0.48 | 0.225 | 0.04 | 0.0 | -4.73 | 0.97 | | $153 \ 263$ | 0.425 | 0.00 | 27.5 | -0.61 | 0.350 | 0.02 | 22.5 | 0.60 | 0.225 | 0.06 | 0.0 | -4.97 | 1.21 | | $154 \ 264$ | 0.425 | 0.00 | 25.0 | -0.62 | 0.325 | 0.02 | 17.5 | 0.90 | 0.225 | 0.06 | 0.0 | -5.01 | 1.52 | | $155 \ 265$ | 0.425 | 0.00 | 25.0 | -0.78 | 0.350 | 0.02 | 22.5 | 0.85 | 0.225 | 0.06
 0.0 | -5.26 | 1.63 | | $156 \ 266$ | 0.425 | 0.00 | 22.5 | -0.87 | 0.325 | -0.04 | 0.0 | 1.06 | 0.225 | 0.06 | 0.0 | -5.17 | 1.93 | | $157 \ 267$ | 0.425 | 0.00 | 20.0 | -1.12 | 0.325 | -0.04 | 0.0 | 0.76 | 0.200 | 0.06 | 0.0 | -5.66 | 1.88 | | $158 \ 268$ | 0.425 | 0.00 | 20.0 | -1.11 | 0.300 | -0.02 | 0.0 | 0.80 | 0.200 | 0.06 | 0.0 | -5.79 | 1.91 | | $159 \ 269$ | 0.425 | 0.00 | 17.5 | -1.40 | 0.300 | -0.02 | 0.0 | 0.80 | 0.200 | 0.06 | 0.0 | -6.29 | 2.21 | | $160 \ 270$ | 0.425 | 0.00 | 17.5 | -1.30 | 0.300 | -0.02 | 0.0 | 0.98 | 0.200 | 0.08 | 0.0 | -6.56 | 2.28 | | Z = 111 | (Rg) | | | | | | | | | | | | | | $152 \ 263$ | 0.425 | -0.02 | 27.5 | -0.95 | 0.350 | 0.06 | 25.0 | 0.32 | 0.200 | 0.04 | 0.0 | -4.38 | 1.27 | | $153 \ 264$ | 0.425 | 0.00 | 27.5 | -1.03 | 0.350 | 0.02 | 22.5 | 0.35 | 0.200 | 0.04 | 0.0 | -4.68 | 1.38 | | $154 \ 265$ | 0.425 | 0.00 | 25.0 | -1.07 | 0.325 | 0.02 | 17.5 | 0.65 | 0.200 | 0.04 | 0.0 | -4.76 | 1.71 | | $155 \ 266$ | 0.425 | 0.00 | 25.0 | -1.22 | 0.325 | 0.00 | 15.0 | 0.66 | 0.200 | 0.04 | 0.0 | -5.05 | 1.88 | | $156 \ 267$ | 0.425 | 0.00 | 22.5 | -1.30 | 0.325 | -0.02 | 0.0 | 0.69 | 0.200 | 0.06 | 0.0 | -5.11 | 1.99 | | 157 268 | 0.425 | 0.00 | 20.0 | -1.52 | 0.325 | -0.04 | 0.0 | 0.41 | 0.200 | 0.06 | 0.0 | -5.53 | 1.93 | | $158 \ 269$ | 0.425 | 0.00 | 20.0 | -1.52 | 0.300 | -0.02 | 0.0 | 0.54 | 0.200 | 0.06 | 0.0 | -5.68 | 2.05 | | 159 270 | 0.425 | 0.00 | 17.5 | -1.78 | 0.300 | -0.02 | 0.0 | 0.54 | 0.200 | 0.06 | 0.0 | -6.17 | 2.32 | | $160 \ 271$ | 0.425 | 0.00 | 17.5 | -1.68 | 0.275 | 0.00 | 0.0 | 0.82 | 0.200 | 0.08 | 0.0 | -6.39 | 2.51 | | Z = 112 | (Cn) | | | | | | | | | | | | | | $153 \ 265$ | 0.425 | 0.00 | 27.5 | -1.05 | 0.350 | 0.02 | 20.0 | 0.28 | 0.200 | 0.04 | 0.0 | -4.06 | 1.33 | | $154 \ 266$ | 0.425 | 0.00 | 25.0 | -1.09 | 0.325 | 0.00 | 15.0 | 0.49 | 0.200 | 0.04 | 0.0 | -4.15 | 1.59 | | $155 \ 267$ | 0.425 | 0.00 | 25.0 | -1.24 | 0.325 | -0.02 | 10.0 | 0.49 | 0.200 | 0.04 | 0.0 | -4.43 | 1.73 | | $156 \ 268$ | 0.425 | 0.00 | 22.5 | -1.35 | 0.325 | -0.02 | 0.0 | 0.50 | | | | -4.47 | 1.86 | | $157 \ 269$ | 0.425 | 0.00 | 20.0 | -1.60 | 0.300 | -0.02 | 0.0 | 0.29 | 0.200 | 0.06 | 0.0 | -4.89 | 1.89 | | $160 \ 272$ | 0.350 | -0.04 | 0.0 | -0.93 | 0.300 | 0.00 | 0.0 | 0.96 | 0.200 | 0.08 | 0.0 | -5.77 | 1.89 | | Z = 113 | (X) | | | | | | | | | | | | | | $153 \ 266$ | 0.425 | 0.00 | 25.0 | -1.38 | 0.350 | 0.00 | 17.5 | -0.12 | 0.200 | 0.04 | 0.0 | -3.74 | 1.25 | | $154 \ 267$ | 0.425 | 0.00 | 25.0 | -1.42 | 0.325 | 0.00 | 12.5 | 0.08 | 0.200 | 0.04 | 0.0 | -3.83 | 1.50 | | $155 \ 268$ | 0.425 | 0.00 | 25.0 | -1.55 | | -0.02 | 0.0 | 0.13 | 0.200 | 0.04 | 0.0 | -4.12 | 1.68 | | $156 \ 269$ | 0.425 | 0.00 | 22.5 | -1.67 | 0.325 | -0.02 | 0.0 | 0.03 | 0.200 | 0.06 | 0.0 | -4.14 | 1.70 | | Z = 114 | (X) | | | | | | | | | | | | | | $158 \ \ 272$ | 0.000 | 0.00 | 0.0 | -2.85 | 0.075 | 0.00 | 0.0 | -2.60 | 0.175 | 0.06 | 0.0 | -4.24 | 0.24 | | 159 273 | 0.000 | 0.00 | | -3.44 | 0.075 | 0.00 | | -3.08 | | | | -4.77 | 0.36 | | $160 \ \ 274$ | 0.000 | 0.00 | | -4.14 | 0.100 | 0.00 | | -3.40 | | | | -4.97 | 0.74 | | Z = 115 | | | | | | | | | | | | | | | 160 275 | 0.050 | 0.00 | 0.0 | -4.22 | 0.100 | 0.00 | 0.0 | -4.01 | 0.175 | 0.06 | 0.0 | -4.74 | 0.21 | | Z = 116 | | | | | | | | | | | | | | | $159 \ \ 275$ | 0.400 | 0.00 | 0.0 | -3.22 | 0.450 | 0.02 | 40.0 | 0.11 | 0.150 | 0.04 | 0.0 | -3.98 | 3.33 |